We propose that 1 + 1 + 1 triple-junction solar cells can provide an increased efficiency, as well as a higher open circuit voltage, compared to tandem solar cells.
Advancements in thin-film transistor (TFT) technology have extended to electronics that can withstand extreme bending or even folding. Although the use of ultrathin plastic substrates has achieved considerable advancement towards this end, free-standing ultrathin plastics inevitably suffer from mechanical instability and are very difficult to handle during TFT fabrication. Here, in addition to the use of a 1.5 μm-thick polyimide (PI) substrate, a 1.5 μm-thick PI film is also deposited on top of the TFT devices to ensure that the devices are located at the neutral plane of the two PI films for high folding stability. For mechanical support during TFT fabrication up to the deposition of the top PI film, the PI substrate is spin coated on top of a carrier glass that is coated with a mixture of carbon nanotubes (CNTs) and graphene oxide (GO). The mixture of CNT and GO facilitates mechanical detachment of the neutral plane (NP) TFTs from the carrier glass before they are transferred to a polydimethylsiloxane (PDMS) substrate as islands. Being located in the neutral bending plane, the NP TFT can be transferred to the PDMS without performance degradation and exhibit excellent mechanical stability after stretching the PDMS substrate up to a 25% elastic elongation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.