Spatial analysis is helpful in understanding the spatial diffusion process of an epidemic. The geographical relationships were important during the early phase of the SARS epidemic in Beijing. The statistic based on the number of doctors was significant and more informative than that of the number of hospitals. It reveals that doctors were important in the spread of SARS in Beijing, and hospitals were not as important as doctors in the contagion period. People are the key to the spread of SARS, but the population density was more significant than the population size, although they were both important throughout the whole period.
The Baishitouwa deposit is a medium-scale quartz–wolframite vein-type deposit in the southern Great Xing’an Range tungsten (W) belt. The W mineralization occurs mainly as veins and dissemination within the mica schist of the Mesoproterozoic Baiyunebo Group. The formation of the deposit can be divided into four stages. The wolframite yielded a lower intercept 206Pb/238U age of 221.0 ± 3.4 Ma (1σ, MSWD = 2.0), which records a late Triassic W mineralization event in the Baishitouwa deposit. In combination with previous geochronological data, we suggest that NE China may have an enormous potential for Triassic W mineralization and more attention should be given to the Triassic ore prospecting in the region. This work highlights that the chemical composition of wolframite is controlled by both the crystallochemical parameters and the composition of the primary ore-forming fluid. Trace-element compositions suggest that wolframite (I) was controlled by the substitution mechanism of 4A(Fe, Mn)2+ + 8BW6+ + B□ ↔ 3AM3+ + AN4+ + 7B(Nb, Ta)5+ + 2BN4+, whereas wolframite (II) was controlled by the substitution mechanism of A(Fe, Mn)2+ + A□ + 2BW6+ ↔ 2AM3+ + 2BN4+. Wolframite (I) contains higher concentrations of Nb, Ta, Sc, and heavy rare earth elements (HREEs), and lower Mn/(Mn + Fe) ratios than wolframite (II). Both wolframite (I) and (II) have similar trace elements and left-dipped REEN patterns, and analogical Nb/Ta ratios. They have similar Y/Ho ratios to Mesozoic highly fractionated W-mineralized granitoids in NE China. These data indicate that the W mineralization at Baishitouwa is genetically related to an underlying highly fractionated granite, and the compositional variation of fluids is likely driven by crystallization of wolframite during the processes of fluid evolution. A change of the ore-forming fluids from an oxidized to a relatively reduced state during the evolution occurred from stage 1 to 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.