Trans vaccenic acid (TVA; trans-11 18:1) is a positional and geometric isomer of oleic acid and it is the predominant trans isomer found in ruminant fats. TVA can be converted into cis-9, trans-11 conjugated linoleic acid (c9, t11-CLA), a CLA isomer that has many beneficial effects, by stearoyl CoA desaturase 1 (SCD1) in the mammary gland. The health benefits associated with CLA are well documented, but it is unclear whether trans fatty acids (TFAs) from ruminant products have healthy effects. Therefore, the effects of TVA on the proliferation of MCF-7 human breast adenocarcinoma cells and MCF-10A human breast epithelial cells were investigated in the present study. Results showed that TVA inhibited the proliferation of MCF-7 cells but not MCF-10A cells by down-regulating the expression of Bcl-2 as well as procaspase-9. In addition, the suppressive effect of TVA was confirmed in SCD1-depleted MCF-7 cells. Our results suggested that TVA exerts a direct anti-carcinogenic effect on MCF-7 cells. These findings provided a better understanding of the research on the anti-carcinogenic effects of TVA and this may facilitate the manufacture of TVA/c9, t11-CLA fortified ruminant products.
BackgroundThis study was performed to investigate the impact of exogenous ghrelin on the pancreatic α-amylase outputs and responses of pancreatic proteins to ghrelin that may relate to pancreatic exocrine.MethodsSprague-Dawley male rats (9 weeks old, 300 ± 10 g) were injected with ghrelin via intraperitoneal (i.p.) infusion at dosage of 0, 0.1, 1.0 and 10.0 μg/kg body weight (BW), respectively. The plasma ghrelin and cholecystokinin (CCK) level were determined using enzyme immunoassay kit; the mRNA expression of ghrelin receptor (GHSR-1α) and growth hormone (GH) receptor were assessed by reverse transcription PCR; the expressions of pancreatic α-amylase activity, extracellular-signal-regulated kinases (ERK), phosphorylated extracellular-signal-regulated kinases (pERK) and c-Jun N-terminal kinase (JNK) were evaluated by western blotting; moreover the responses of pancreatic proteins to ghrelin were analyzed using the two-dimensional gel electrophoresis system.ResultsThe exogenous ghrelin (1.0 and 10.0 μg/kg BW) elevated the level of plasma ghrelin (p < 0.05), and suppressed the expression of pancreatic α-amylase at a dose of 10.0 μg/kg BW (p < 0.05). No difference in the level of plasma CCK was observed, even though rats were exposed to any dose of exogenous ghrelin. In addition, a combination of western blot and proteomic analysis revealed exogenous ghrelin (10.0 μg/kg BW) induced increasing the JNK and ERK expressions (p < 0.05) and four proteins such as Destrin, Anionic trypsin-1, Trypsinogen, and especially eukaryotic translation initiation factor 3 in rat pancreas.ConclusionsTaken together, exogenous ghrelin by i.p. infusion plays a role in the pancreatic exocrine secretion via mitogen-activated protein kinase signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.