Purpose Hypoxia inducible factors (HIFs) are key regulators of oxygen homeostasis in response to reduced oxygenation in somatic cells. In addition, HIF-1α protein can be also induced by insulin-like growth factor I (IGF-I) treatment in various cell lines under normoxic condition. However, the expression and function of HIF-1α in embryogenesis are still unclear. Therefore, the objectives of this study were to examine the expression of HIF-1α in mouse blastocysts cultured under hypoxic and normoxic conditions, and to determine whether oxygen tension and IGF-I influence embryonic development through stimulation of HIF-1α expression. Methods Mouse embryos were cultured from the 1-cell to blastocyst stage under 5 % or 20 % O 2 in both the absence and presence of IGF-I. Results The embryonic development rates to the blastocyst stage were not affected by oxygen tension or IGF-I treatment. HIF-1α protein was localized to the cytoplasm of blastocysts, and its levels were independent of oxygen concentration or IGF-I treatment. Blastocysts cultured under 5 % O 2 exhibited significantly higher total cell numbers (83.4±18.1) and lower apoptotic index (3.7±1.5) than those cultured under 20 % O 2 (67.4±15.6) (6.9±3.5) (P<0.05). IGF-I reduced the apoptotic index in both oxygen conditions, but a significant decrease was detected in the 20 % O 2 group. Conclusions HIF-1α may not be a major mediator that responds to change in oxygen tension within blastocysts, inconsistent with that of somatic cells. Supplementation of culture media with IGF-I has been shown to promote embryo development by an anti-apoptotic effect, instead of increasing HIF-1α protein expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.