We evaluated the neutralizing activity in serum from three patients >1 year after recovery from Middle East respiratory syndrome (MERS) associated with mild pneumonia treated with antivirals during the MERS outbreak in South Korea at 2015. The neutralizing activity in serum was measured by pseudovirus inhibition assays. Three-fold diluted serum of subjects showed only 9.7%, 10.3%, and 2.2% reductions in relative light units. So, significant neutralizing activity was not demonstrated in any sera of three patients with mild pneumonia >1 year after being successfully treated with antiviral agents and recovering from MERS coronavirus infection.
The effects of tuberculosis (TB) on the kinetics of CD4(+) T cells among HIV-infected individuals with early combination antiretroviral therapy (cART) after TB therapy initiation are poorly characterized. We conducted a case-control study with 15 HIV-TB-coinfected patients who initiated TB treatment and early cART, and 30 controls without TB who had similar CD4(+) T cell counts and viral loads at the time of starting cART. We compared the rate of CD4(+) T cell increase for 5 years after cART. The time to CD4(+) T cell increase >250 cells/mm(3) was significantly slower in HIV-TB-coinfected patients (p=0.015, by log rank test). HIV-TB-coinfected patients had significantly lower median CD4(+) T cell counts at 5 years after cART (p=0.048). The difference in CD4(+) T cell increase was observed only during the first 6 months after cART initiation (p=0.002). These data suggest that TB slows the rate of CD4(+) T cell recovery at an early period after cART. The effects of TB on the long-term immunity of HIV-infected patients should be further evaluated.
Purpose: To understand the pathophysiology of Best disease (BD) and autosomal recessive bestrophinopathy (ARB) by establishing an in vitro model using human induced pluripotent stem cell (iPSC). Materials and Methods: Human iPSC lines were generated from mononuclear cells in peripheral blood of one ARB patient, one autosomal dominant BD patient, and two normal controls. Immunocytochemistry and reverse transcriptase polymerase chain reaction in iPSC lines were conducted to demonstrate the pluripotent markers. After the differentiation of iPSC into functional retinal pigment epithelium (RPE), morphological characteristics of the RPE were evaluated using confocal microscopy and immunocytochemistry. The rates of fluid flow across iPSC-RPE monolayer were measured to compare apical to basal fluid transports by RPE. RNA sequencing was performed on iPSC-RPE to identify the differences in gene expression profiles, and specific gene sets were tested using Gene Set Enrichment Analysis. Results: Morphological characteristics, gene expression, and epithelial integrity of ARB iPSC were comparable to those of BD patient or normal control. Fluid transport from apical to basal was significantly decreased in ARB iPSC-RPE compared with BD iPSC-RPE or control iPSC-RPE. Gene Set Enrichment Analysis confirmed that ARB iPSC-RPE exhibited significant enrichments of epithelial-mesenchymal transition gene set and TNF-α signaling via NF-κB gene set compared to control iPSC-RPE or BD iPSC-RPE. Conclusion: A human iPSC model of ARB showed a functional deficiency rather than anatomical defects. ARB may be caused by RPE dysfunction following BEST1 mutation.
The cellular source of HIV RNA circulating in blood plasma remains unclear. Here, we investigated whether sequence analysis of HIV RNA populations circulating before combination antiretroviral therapy (cART) and HIV DNA populations in cellular subsets (CS) after cART could identify the cellular sources of circulating HIV RNA. Blood was collected from five subjects at cART initiation and again 6 months later. Naïve CD4+ T cells, resting central memory and effector memory CD4+ T cells, activated CD4+ T cells, monocytes, and natural killer cells were sorted using a fluorescence-activated cell sorter. HIV-1 env C2V3 sequences from HIV RNA in blood plasma and HIV DNA in CSs were generated using single genome sequencing. Sequences were evaluated for viral compartmentalization (Fst test) and migration events (MEs; Slatkin Maddison and cladistic measures) between blood plasma and each CS. Viral compartmentalization was observed in 88% of all cellular subset comparisons (range: 77–100% for each subject). Most observed MEs were directed from blood plasma to CSs (52 MEs, 85.2%). In particular, there was only viral movement from plasma to NK cells (15 MEs), monocytes (seven MEs), and naïve cells (five ME). We observed a total of nine MEs from activated CD4 cells (2/9 MEs), central memory T cells (3/9 MEs), and effector memory T cells (4/9 MEs) to blood plasma. Our results revealed that the HIV RNA population in blood plasma plays an important role in seeding various cellular reservoirs and that the cellular source of the HIV RNA population is activated central memory and effector memory T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.