We analyze use of a quasi-likelihood ratio statistic for a mixture model to test the null hypothesis of one regime versus the alternative of two regimes in a Markov regime-switching context. This test exploits mixture properties implied by the regime-switching process, but ignores certain implied serial correlation properties. When formulated in the natural way, the setting is nonstandard, involving nuisance parameters on the boundary of the parameter space, nuisance parameters identified only under the alternative, or approximations using derivatives higher than second order. We exploit recent advances by Andrews (2001) and contribute to the literature by extending the scope of mixture models, obtaining asymptotic null distributions different from those in the literature. We further provide critical values for popular models or bounds for tail probabilities that are useful in constructing conservative critical values for regime-switching tests. We compare the size and power of our statistics to other useful tests for regime switching via Monte Carlo methods and find relatively good performance. We apply our methods to reexamine the classic cartel study of Porter (1983) and reaffirm Porter's findings. Copyright The Econometric Society 2007.
Tests for regression neglected nonlinearity based on artificial neural networks (ANNs) have so far been studied by separately analyzing the two ways in which the null of regression linearity can hold. This implies that the asymptotic behavior of general ANN-based tests for neglected nonlinearity is still an open question. Here we analyze a convenient ANN-based quasi-likelihood ratio statistic for testing neglected nonlinearity, paying careful attention to both components of the null. We derive the asymptotic null distribution under each component separately and analyze their interaction. Somewhat remarkably, it turns out that the previously known asymptotic null distribution for the type 1 case still applies, but under somewhat stronger conditions than previously recognized. We present Monte Carlo experiments corroborating our theoretical results and showing that standard methods can yield misleading inference when our new, stronger regularity conditions are violated.
We develop a method of testing linearity using power transforms of regressors, allowing for stationary processes and time trends. The linear model is a simplifying hypothesis that derives from the power transform model in three different ways, each producing its own identification problem. We call this modeling difficulty the trifold identification problem and show that it may be overcome using a test based on the quasi-likelihood ratio (QLR) statistic. More specifically, the QLR statistic may be approximated under each identification problem and the separate null approximations may be combined to produce a composite approximation that embodies the linear model hypothesis. The limit theory for the QLR test statistic depends on a Gaussian stochastic process. In the important special case of a linear time trend regressor and martingale difference errors asymptotic critical values of the test are provided. The paper also considers generalizations of the Box-Cox transformation, which are associated with the QLR test statistic.
We provide a methodology for testing a polynomial model hypothesis by generalizing the approach and results of Baek, Cho, and Phillips (2015; BCP) which test for neglected nonlinearity using power transforms of regressors against arbitrary nonlinearity. We use the BCP quasi-likelihood ratio test and deal with the new multifold identification problem that arises under the null of the polynomial model. The approach leads to convenient asymptotic theory for inference, has omnibus power against general nonlinear alternatives, and allows estimation of an unknown polynomial degree in a model by way of sequential testing, a technique that is useful in the application of sieve approximations. Simulations show good performance in the sequential test procedure in both identifying and estimating unknown polynomial order. The approach, which can be used empirically to test for misspecification, is applied to a Mincer (1958, 1974) equation using data from Card (1995) and Bierens and Ginther (2001). The results confirm that the standard Mincer log earnings equation is readily shown to be misspecified. The applications consider different data sets and examine the impact of nonlinear effects of experience and schooling on earnings, allowing for flexibility in the respective polynomial representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.