The electrical properties of single ZnO nanowire were examined by fabricating single nanowire based field effect transistors (FETs) via two approaches, i.e., back- and top-gate approaches by using electron beam lithography (EBL) and photolithography processes. The ZnO nanowires were synthesized by non-catalytic simple thermal evaporation process by using metallic zinc powder in the presence of oxygen. The as-grown ZnO nanowires were characterized in terms of their structural and optical properties which confirmed that the grown nanowires are well-crystallized with the wurtzite hexagonal phase and exhibiting good optical properties. The peak transconductances of the back- and top-gate FETs were approximately 3.2 and approximately 7.4 nS, respectively. The field effect mobilities (micro(eff)) for the back- and top-gate FETs were measured to be 3.4 and 7.87 cm2/V x s, respectively. Our studies conclude that the fabricated top-gate FETs exhibited higher and good electrical properties as compared to ZnO nanowire FETs fabricated using back-gate approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.