Over the past decades, nitrilases have drawn considerable attention because of their application in nitrile degradation as prominent biocatalysts. Nitrilases are derived from bacteria, filamentous fungi, yeasts, and plants. In-depth investigations on their natural sources function mechanisms, enzyme structure, screening pathways, and biocatalytic properties have been conducted. Moreover, the immobilization, purification, gene cloning and modifications of nitrilase have been dwelt upon. Some nitrilases are used commercially as biofactories for carboxylic acids production, waste treatment, and surface modification. This critical review summarizes the current status of nitrilase research, and discusses a number of challenges and significant attempts in its further development. Nitrilase is a significant and promising biocatalyst for catalytic applications.
Transglutaminase (TGase) catalyzes the cross‐linking of many proteins and has been widely used to improve the properties of certain protein‐based materials. Keratin is considered as a promising biomaterial candidate following traditional chemical modification. In this study, the effect of TGase on the properties of a wool keratin film was investigated. The TGase‐modified film was applied to drug release and cell proliferation. Treatment with TGase (30 U/g keratin) for 18 h at 40°C increased the tensile strength of the film from 5.18 ± 0.15 MPa to 6.22 ± 0.11 MPa and decreased the elongation at break from 83.47 ± 1.79% to 72.12 ± 3.02%. The stability of the film in PBS and in artificial gastric juice was also improved. A rougher surface and a more compact cross‐section were observed by scanning electron microscopy photographs of the TGase‐treated film. SDS‐PAGE analysis confirmed that higher molecular weight proteins were formed in the TGase‐modified keratin solution and film. The results of the drug release assay using diclofenac indicated that both films with and without TGase treatment led to a high initial release in PBS, which was more constant in artificial gastric juice. The enzyme treatment led to a lower drug release rate from the film. Cell culture experiments suggested that the TGase‐mediated cross‐linked keratin film shows a good biocompatibility and that it can be used for tissue engineering applications.
Five different proteases were used to hydrolyze the swim bladders of Nibea japonica and the hydrolysate treated by neutrase (collagen peptide named SNNHs) showed the highest DPPH radical scavenging activity. The extraction process of SNNHs was optimized by response surface methodology, and the optimal conditions were as follows: a temperature of 47.2 °C, a pH of 7.3 and an enzyme concentration of 1100 U/g, which resulted in the maximum DPPH clearance rate of 95.44%. Peptides with a Mw of less than 1 kDa (SNNH-1) were obtained by ultrafiltration, and exhibited good scavenging activity for hydroxyl radicals, ABTS radicals and superoxide anion radicals. Furthermore, SNNH-1 significantly promoted the proliferation of HUVECs, and the protective effect of SNNH-1 against oxidative damage of H2O2-induced HUVECs was investigated. The results indicated that all groups receiving SNNH-1 pretreatment showed an increase in GSH-Px, SOD, and CAT activities compared with the model group. In addition, SNNH-1 pretreatment reduced the levels of ROS and MDA in HUVECs with H2O2-induced oxidative damage. These results indicate that collagen peptides from swim bladders of Nibea japonica can significantly reduce the oxidative stress damage caused by H2O2 in HUVECs and provides a basis for the application of collagen peptides in the food industry, pharmaceuticals, and cosmetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.