Atmospheric-pressure plasmas (APPs) have attracted great interest and have been widely applied in biomedical applications, as due to their non-thermal and reactive properties, they interact with living tissues, cells and bacteria. Various types of plasma sources generated at atmospheric pressure have been developed to achieve better performance in specific applications. This article presents an overview of the general characteristics of APPs and a brief summary of their biomedical applications, and reviews a wide range of these sources developed for biomedical applications. The plasma sources are classified according to their power sources and cover a wide frequency spectrum from dc to microwaves. The configurations and characteristics of plasma sources are outlined and their biomedical applications are presented.
Liver fibrosis leads to liver cirrhosis and failure, and no effective treatment is currently available. Growing evidence supports a link between mitochondrial dysfunction and liver fibrogenesis and mitochondrial quality control-based therapy has emerged as a new therapeutic target. We investigated the protective mechanisms of melatonin against mitochondrial dysfunction-involved liver fibrosis, focusing on mitophagy and mitochondrial biogenesis. Rats were treated with carbon tetrachloride (CCl4) dissolved in olive oil (0.5 mL/kg, twice a week, i.p.) for 8 wk. Melatonin was administered orally at 2.5, 5, and 10 mg/kg once a day. Chronic CCl4 exposure induced collagen deposition, hepatocellular damage, and oxidative stress, and melatonin attenuated these increases. Increases in mRNA and protein expression levels of transforming growth factor β1 and α-smooth muscle actin in response to CCl4 were attenuated by melatonin. Melatonin attenuated hallmarks of mitochondrial dysfunction, such as mitochondrial swelling and glutamate dehydrogenase release. Chronic CCl4 exposure impaired mitophagy and mitochondrial biogenesis, and melatonin attenuated this impairment, as indicated by increases in mitochondrial DNA and in protein levels of PTEN-induced putative kinase 1 (PINK1); Parkin; peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α); nuclear respiratory factor 1 (NRF1); and transcription factor A, mitochondrial (TFAM). CCl4-mediated decreases in mitochondrial fission- and fusion-related proteins, such as dynamin-related protein 1 (DRP1) and mitofusin 2, were also attenuated by melatonin. Moreover, melatonin induced AMP-activated protein kinase (AMPK) phosphorylation. These results suggest that melatonin protects against liver fibrosis via upregulation of mitophagy and mitochondrial biogenesis, and may be useful as an anti-fibrotic treatment.
Lipid emulsion has been shown to be an effective treatment for systemic toxicity induced by local anesthetics, which is reflected in case reports. A systemic review and meta-analysis confirm the efficacy of this treatment. Investigators have suggested mechanisms associated with the lipid emulsion-mediated recovery of cardiovascular collapse caused by local anesthetic systemic toxicity; these mechanisms include lipid sink, a widely accepted theory in which highly soluble local anesthetics (particularly bupivacaine) are absorbed into the lipid phase of plasma from tissues (e.g., the heart) affected by local-anesthetic-induced toxicity; enhanced redistribution (lipid shuttle); fatty acid supply; reversal of mitochondrial dysfunction; inotropic effects; glycogen synthase kinase-3β phosphorylation associated with inhibition of the mitochondrial permeability transition pore opening; inhibition of nitric oxide release; and reversal of cardiac sodium channel blockade. The current review includes the following: 1) an introduction, 2) a list of the proposed mechanisms, 3) a discussion of the best lipid emulsion treatment for reversal of local anesthetic toxicity, 4) a description of the effect of epinephrine on lipid emulsion-mediated resuscitation, 5) a description of the recommended lipid emulsion treatment, and 6) a conclusion.
Since graphene, a single sheet of graphite, has all of its carbon atoms on the surface, its property is very sensitive to materials contacting the surface. Herein, we report novel Raman peaks observed in annealed graphene and elucidate their chemical origins by Raman spectroscopy and atomic force microscopy (AFM). Graphene annealed in oxygen-free atmosphere revealed very broad additional Raman peaks overlapping the D, G and 2D peaks of graphene itself. Based on the topographic confirmation by AFM, the new Raman peaks were attributed to amorphous carbon formed on the surface of graphene by carbonization of environmental hydrocarbons. While the carbonaceous layers were formed for a wide range of annealing temperature and time, they could be effectively removed by prolonged annealing in vacuum. This study underlines that spectral features of graphene and presumably other 2-dimensional materials are highly vulnerable to interference by foreign materials of molecular thickness.
The resistance switching current-voltage (I-V) characteristics in polycrystalline NiO films were investigated in the temperature range of 10K<T<300K. Very clear reversible resistive switching phenomena were observed in the entire temperature range. An analysis of the temperature dependence of the resistance switching transport revealed additional features, not reported in previous studies, that weak metallic conduction and correlated barrier polaron hopping coexist in the high-resistance off state and that relative dominance depends on the temperature and defect configuration. In addition, the authors propose that metallic Ni defects, existing near polycrystalline (or granular) boundaries, play a key role in the formation of a metallic channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.