The regulatory roles of circular RNAs (circRNAs) in cancer are attracting increasing attention. The aim of the present study was to explore the roles of circRNAs in pancreatic ductal adenocarcinoma (PDAC) using microarray data. The circRNA and microRNA (miRNA) microarray data were downloaded from Gene Expression Omnibus. A total of 256 differentially expressed circRNAs were obtained by analyzing the circRNA microarray data from 26 pairs of PDAC and adjacent normal tissues. Differentially expressed miRNAs were analyzed using a dataset of 6 PDAC tissues and 5 non-neoplastic pancreas samples (GSE43796); 20 differentially expressed miRNAs were detected. circRNA/miRNA interactions were predicted between differentially expressed circRNAs and miRNAs using miRanda and RNAhybrid algorithms and 51 circRNA/miRNA interactions were obtained. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using gene symbols of differentially expressed circRNAs demonstrated that 41 circRNAs were enriched in 17 pathways. Subnetworks that were associated with apoptosis or proliferation were extracted from the 17 pathways and a new network was constructed using Cytoscape software, which identified that mitogen-activated protein kinase, PI3K/AKT and WNT/β-catenin signaling pathways may be associated with PDAC development. In conclusion, 256 differentially expressed circRNAs and 20 differentially expressed miRNAs were identified in PDAC tissues compared with normal tissues; the circRNA/miRNA interactions and the networks of KEGG pathways provided a global view of the function of these differentially expressed circRNAs and miRNAs.
An unsymmetrical and noncoplanar heterocyclic dianhydride was synthesized from a bisphenol-like phthalazinone, 4-(4-hydroxylphenyl)-2,3-phthalazin-1-one, and a series of novel poly(ether imide)s based on it, with intrinsic viscosities of 0.67-1.42 dL/g, were obtained by one-step solution polymerization in m-cresol at 200°C for 20 h. The polymers were readily soluble in N-methyl-2-pyrrolidinone and m-cresol. The poly(ether imide)s derived from 4,4Ј-oxydianiline and 4,4Ј-methylenedianiline were also very soluble in chloroform, 1,1Ј,2,2Ј-tetrachloroethane, and N,N-dimethylacetamide. The glass-transition temperatures were 289 -326°C, as determined by differential scanning calorimetry. All the degradation temperatures for 5% weight loss occurred above 482°C in nitrogen. The tensile strength of thin films of some of the polymers varied from 103.1 to 121.4 MPa.
With polymer pipes being used more commonly, performance requirements are increasing. Studies on the enhancement of mechanical properties of polymer pipes are particularly important. In this study, a self-designed annular expansion pipe extruder head was used to enhance the mechanical properties of HDPE pipes. Different morphologies of the HDPE pipes were produced under different processing conditions. When the extrusion angle was 30 (P30), the best mechanical properties were obtained. The hoop tensile strength and axial tensile strength were 14.5% and 41.0% higher, respectively, compared with the specimen without expansion (P0). This improvement of mechanical properties can be attributed to several reasons. First, the processing parameters of P30 reached the threshold shear rate and strain for shish-kebab formation, as shown by scanning electron microscopy. Second, P30 has the highest orientation parameter and crystallinity of 0.679 and 67.27%, respectively, from 2D wide-angle diffraction (WAXD). Polarized FTIR shows the same trend as 2D-WAXD. Third, the outer bamboo-like self-reinforced structure is formed inside the pipe at 30 expansion angle while the core layer has a well-formed crystal structure; the special structure improves the overall performance of HDPE pipe. This method can be utilized in large-scale industrial production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.