Knowledge graph can effectively analyze and construct the essential characteristics of data. At present, scholars have proposed many knowledge graph models from different perspectives, especially in the medical field, but there are still relatively few studies on stroke diseases using medical knowledge graphs. Therefore, this paper will build a medical knowledge graph model for stroke. Firstly, a stroke disease dictionary and an ontology database are built through the international standard medical term sets and semiautomatic extraction-based crowdsourcing website data. Secondly, the external data are linked to the nodes of the existing knowledge graph via the entity similarity measures and the knowledge representation is performed by the knowledge graph embedded model. Thirdly, the structure of the established knowledge graph is modified continuously through iterative updating. Finally, in the experimental part, the proposed stroke medical knowledge graph is applied to the real stroke data and the performance of the proposed knowledge graph approach on the series of Trans ∗ models is compared.
In the past ten years, crowd detection and counting have been applied in many fields such as station crowd statistics, urban safety prevention, and people flow statistics. However, obtaining accurate positions and improving the performance of crowd counting in dense scenes still face challenges, and it is worthwhile devoting much effort to this. In this paper, a new framework is proposed to resolve the problem. The proposed framework includes two parts. The first part is a fully convolutional neural network (CNN) consisting of backend and upsampling. In the first part, backend uses the residual network (ResNet) to encode the features of the input picture, and upsampling uses the deconvolution layer to decode the feature information. The first part processes the input image, and the processed image is input to the second part. The second part is a peak confidence map (PCM), which is proposed based on an improvement over the density map (DM). Compared with DM, PCM can not only solve the problem of crowd counting but also accurately predict the location of the person. The experimental results on several datasets (Beijing-BRT, Mall, Shanghai Tech, and UCF_CC_50 datasets) show that the proposed framework can achieve higher crowd counting performance in dense scenarios and can accurately predict the location of crowds.
Precisely segmenting the hippocampus from the brain is crucial for diagnosing neurodegenerative illnesses such as Alzheimer’s disease, depression, etc. In this research, we propose an enhanced hippocampus segmentation algorithm based on 3D U-Net that can significantly increase hippocampus segmentation performance. First, a dynamic convolution block is designed to extract information more comprehensively in the steps of the 3D U-Net’s encoder and decoder. In addition, an improved coordinate attention algorithm is applied in the skip connections step of the 3D U-Net to increase the weight of the hippocampus and reduce the redundancy of other unimportant location information. The algorithm proposed in this work uses soft pooling methods instead of max pooling to reduce information loss during downsampling steps. The datasets employed in this research were obtained from the MICCAI 2013 SATA Challenge (MICCAI) and the Harmonized Protocol initiative of the Alzheimer’s Disease Neuroimaging Initiative (HarP). The experimental results on the two datasets prove that the algorithm proposed in this work outperforms other commonly used segmentation algorithms. On the HarP, the dice increase by 3.52%, the mIoU increases by 2.65%, and the F1 score increases by 3.38% in contrast to the baseline. On the MICCAI, the dice, the mIoU, and the F1 score increase by 1.13%, 0.85%, and 1.08%, respectively. Overall, the proposed model outperforms other common algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.