In the past ten years, crowd detection and counting have been applied in many fields such as station crowd statistics, urban safety prevention, and people flow statistics. However, obtaining accurate positions and improving the performance of crowd counting in dense scenes still face challenges, and it is worthwhile devoting much effort to this. In this paper, a new framework is proposed to resolve the problem. The proposed framework includes two parts. The first part is a fully convolutional neural network (CNN) consisting of backend and upsampling. In the first part, backend uses the residual network (ResNet) to encode the features of the input picture, and upsampling uses the deconvolution layer to decode the feature information. The first part processes the input image, and the processed image is input to the second part. The second part is a peak confidence map (PCM), which is proposed based on an improvement over the density map (DM). Compared with DM, PCM can not only solve the problem of crowd counting but also accurately predict the location of the person. The experimental results on several datasets (Beijing-BRT, Mall, Shanghai Tech, and UCF_CC_50 datasets) show that the proposed framework can achieve higher crowd counting performance in dense scenarios and can accurately predict the location of crowds.
With the continuous deepening of Artificial Neural Network (ANN) research, ANN model structure and function are improving towards diversification and intelligence. However, the model is more evaluated from the pros and cons of the problem-solving results and the lack of evaluation from the biomimetic aspect of imitating neural networks is not inclusive enough. Hence, a new ANN models evaluation strategy is proposed from the perspective of bionics in response to this problem in the paper. Firstly, four classical neural network models are illustrated: Back Propagation (BP) network, Deep Belief Network (DBN), LeNet5 network, and olfactory bionic model (KIII model), and the neuron transmission mode and equation, network structure, and weight updating principle of the models are analyzed qualitatively. The analysis results show that the KIII model comes closer to the actual biological nervous system compared with other models, and the LeNet5 network simulates the nervous system in depth. Secondly, evaluation indexes of ANN are constructed from the perspective of bionics in this paper: small-world, synchronous, and chaotic characteristics. Finally, the network model is quantitatively analyzed by evaluation indexes from the perspective of bionics. The experimental results show that the DBN network, LeNet5 network, and BP network have synchronous characteristics. And the DBN network and LeNet5 network have certain chaotic characteristics, but there is still a certain distance between the three classical neural networks and actual biological neural networks. The KIII model has certain small-world characteristics in structure, and its network also exhibits synchronization characteristics and chaotic characteristics. Compared with the DBN network, LeNet5 network, and the BP network, the KIII model is closer to the real biological neural network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.