This paper presents a novel interactive approach for adding depth information into hand-drawn cartoon images and animations. In comparison to previous depth assignment techniques our solution requires minimal user effort and enables creation of consistent pop-ups in a matter of seconds. Inspired by perceptual studies we formulate a custom tailored optimization framework that tries to mimic the way that a human reconstructs depth information from a single image. Its key advantage is that it completely avoids inputs requiring knowledge of absolute depth and instead uses a set of sparse depth (in)equalities that are much easier to specify. Since these constraints lead to a solution based on quadratic programming that is time consuming to evaluate we propose a simple approximative algorithm yielding similar results with much lower computational overhead. We demonstrate its usefulness in the context of a cartoon animation production pipeline including applications such as enhancement, registration, composition, 3D modelling and stereoscopic display.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.