This paper presents an upright piezoelectric energy harvester (UPEH) with cylinder extension along its longitudinal direction. The UPEH can generate energy from low-speed wind by bending deformation produced by vortex-induced vibrations (VIVs). The UPEH has the advantages of less working space and ease of setting up an array over conventional vortex-induced vibration harvesters. The nonlinear distributed modeling method is established based on Euler–Bernoulli beam theory and aerodynamic vortex-induced force of the cylinder is obtained by the van der Pol wake oscillator theory. The fluid–solid–electricity governing coupled equations are derived using Lagrange’s equation and solved through Galerkin discretization. The effect of cylinder gravity on the dynamic characteristics of the UPEH is also considered using the energy method. The influences of substrate dimension, piezoelectric dimension, the mass of cylinder extension, and electrical load resistance on the output performance of harvester are studied using the theoretical model. Experiments were carried out and the results were in good agreement with the numerical results. The results showed that a UPEH configuration achieves the maximum power of 635.04 μW at optimum resistance of 250 kΩ when tested at a wind speed of 4.20 m/s. The theoretical results show that the UPEH can get better energy harvesting output performance with a lighter tip mass of cylinder, and thicker and shorter substrate in its synchronization working region. This work will provide the theoretical guidance for studying the array of multiple upright energy harvesters.
Low-speed wind energy has potential to be captured for powering micro-electro-mechanical systems or sensors in remote inaccessible place by piezoelectric energy harvesting from vortex-induced vibration (VIV). Conventional theory or finite-element analysis mostly considers a simple pure resistance as interface circuit because of the complex fluid-solid-electricity coupling in aeroelastic piezoelectric energy harvesting. However, the output alternating voltage should be rectified to direct voltage to be used in practical occasions, where the theoretical analysis and finite-element analysis for complex interface may be cumbersome or difficult. To solve this problem, this paper presents an equivalent circuit modeling (ECM) method to analyze the performance of vortex-induced energy harvesters. Firstly, the equivalent analogies from the mechanical and fluid domain to the electrical domain are built. The linear mechanical and fluid elements are represented by standard electrical elements. The nonlinear elements are represented by electrical non-standard user-defined components. Secondly, the total fluid-solid-electricity coupled mathematical equations of the harvesting system are transformed into electrical formulations based on the equivalent analogies. Finally, the entire ECM is established in a circuit simulation software to perform system-level transient analyses. The simulation results from ECM have good agreement with the experimental measurements. Further parametric studies are carried out to assess the influences of wind speed and resistance on the output power of the alternating circuit interface and the capacitor filter circuit. At wind speed of 1.2 m/s, the energy harvester could generate an output power of 81.71 μW with the capacitor filter circuit and 114.64 μW with the alternating circuit interface. The filter capacitance is further studied to ascertain its effects on the stability of output and the settling time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.