This paper investigates the optimization of traffic congestion systems via network congestion game approach. Firstly, using the semi-tensor product(STP) of matrices, the matrix expression of network congestion game is obtained. Secondly, a necessary and sufficient condition is proposed to guarantee that the traffic systems can be transformed into network congestion game with given performance criterion as its weighted potential function. Then an algorithm is provided to design the traffic congestion price in the case that conversion can be established. Thirdly, by designing proper learning rule, the optimization of traffic systems can be achieved when individuals optimize their own utility function. Moreover, two special cases which make our results more accord with reality and rich. Finally, an example is exploited to demonstrate the effectiveness of our obtained results.
This paper extends the memristive neural networks (MNNs) to quaternion field, a new class of neural networks named quaternion-valued memristive neural networks (QVMNNs) is then established, and the problem of drive-response global synchronization of this type of networks is investigated in this paper. Two cases are taken into consideration: one is with the conventional differential inclusion assumption, the other without. Criteria for the global synchronization of these two cases are achieved respectively by appropriately choosing the Lyapunov functional and applying some inequality techniques. Finally, corresponding simulation examples are presented to demonstrate the correctness of the proposed results derived in this paper.
We investigate a sequence of dynamic criminal networks on a time series based on the dynamic network analysis (DNA). According to the change of networks’ structure, networks’ variation trend is analyzed to forecast its future structure. Finally, an optimal arresting time and priority list are designed based on our analysis. Better results can be expected than that based on social network analysis (SNA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.