There is abundant coal resource of Jurassic period in Yulin City, and the problem of shallow buried coal seams mining will occur in every mine area. FLAC3D is used to analyze the plastic failure, deformation characteristic, and vertical stress on shallow buried coal seams mining, based on north No. 2 engineering geological conditions of Hongliulin Mining Corporation. In this paper, the results are shown as follows. The plastic failure fields of section coal pillar forming are smaller; the coal seam hosting is shallower. The elastic region of section coal pillar has a relatively large proportion, which is the coal seam first mined. The value of Z-Displacement for the first coal seam is relatively small. However, for the lower coal seam it is relatively big. The value of X-Displacement for each coal seam is relatively small. The coal wall of section coal pillar is in a steady state. The coal seam hosting is deeper; the more distant is from coal wall to peak point abutment pressure. The stress concentration factor for the first coal seam is relatively big. The research conclusion reveals instability mechanism of section coal pillar, while coal seams mining, which provides a theoretical basis for designing width vale and optimizing supporting scheme of section coal pillar, has engineering experience application value to other coalmines in Yulin City.
To explore the instability mechanisms of coal pillars in the upper coal during coal seam group mining in the Yulin area and hence to achieve safe and green mining of the lower coal seams, the engineering geological condition for no. 3−1, no. 4−2, and no. 5−2 coal seams in the north-second panel area of Hongliulin Coal Mine was investigated in this article. Using the combination of physical simulation, FLAC3D numerical calculation, and theoretical analysis, the instability mechanisms, the characteristics of the fracture structure, and fracture evolution between the coal pillars and the interval rocks were all studied. The results showed that a layout position existed that induced instability and subsidence of the coal pillars of the upper coal seam. The instability mechanism was such that the concentrated stress of the upper and lower coal pillars caused shear plastic damage in the interval rock along the direction of stress-transfer influence angle. The phenomenon of “inclined step beam” fracture structure, falling fracture zone, and severe mine pressure happened during seam group mining. Furthermore, the minimum center offset formula was put forward to study the instability of the upper coal pillars. This study provides a theoretical basis for a reasonable layout on how to position coal pillars for shallow coal seams group mining.
With the increasing depth and intensity of coal mining, the impact on ground pressure has become one of the main disasters facing mining, seriously threatening mine safety. Introducing the concept of toughness urban design, building a joint toughness prevention and control system based on active prediction and analysis of the impact pressure risk at the back mining face according to the geological deposit conditions and mining technology conditions and passive warning using monitoring data to explore the impact precursor characteristics is an important basis for impact pressure management and has important engineering significance to ensure the safe back mining. In this paper, firstly, the whole working face is divided into small unit areas, and the BP neural network prediction model is constructed to predict and analyze each small unit separately, and the distribution of impact ground pressure hazard level in different areas of the working face is derived. Next, a FLAC numerical model was established to analyze the stress distribution and migration characteristics at different retrieval distances of the working face and to explore the main distribution areas of impact hazard. Finally, the trend method, critical value method, and dynamic rate of change method were applied to determine the early warning indicators of impact ground pressure in the Kuan Gou coal mine, establish a comprehensive early warning method of impact ground pressure applicable to the Kuan Gou coal mine, and carry out field application with good effect. The findings of this paper have good scientific significance and reference value for promoting impact hazard analysis and early warning in mines with similar geological conditions and mining technology conditions in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.