Bulk silicon Complementary Metal Oxide Semiconductor (CMOS) devices have distinct single event latch-up (SEL) problems in aerospace. Therefore, it is essential that CMOS devices are designed with appropriate circuit-level methods. Traditional resistor hardness satisfies the current aerospace trend of low cost, high performance, and miniaturization. Therefore conventional resistor hardness is often applied in circuit-level designs due to the reduction of latch-up current. In circuits containing a DC-DC buck converter, the resistor is connected to the back of the converter in the traditional method. However, the traditional method is unable to take devices out of the latch-up owing to the small resistance range. To solve this problem, the paper proposes an improved design for the resistor in front of the DC-DC buck converter. The proposed method enables the devices to exit the latch-up by increasing the resistance range according to the input characteristic of the DC-DC buck converter. The paper quantifies the range of the resistor through the parametric model containing the resistor and the DC-DC buck converter. Two CMOS devices are chosen for pulsed laser experiments, verifying that the proposed method increases the resistance ranges by 300% to 400% compared to the conventional method. It is also demonstrated that the proposed method exits the devices from latch-up within the resistor ranges. That is, the resistance ranges of 34 Ω~41 Ω and 51 Ω~56 Ω reduce the latch-up currents of the devices to below holding currents of 72.1 mA and 24.2 mA, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.