The familiarity to the subject of any potential stimuli presents one of the major difficulties for the investigation of the self; the separation of effects resulting from familiarity from self-effects being extremely problematic. The aim of this study was thus to investigate the neural distinction between self and familiarity by combining two sets of fMRI data with a meta-analysis. In the first fMRI experiment, regions responding to self/familiarity were investigated using the subject's own name and names of familiar others. These effects were confirmed and extended in a second fMRI experiment using the subject's own name and a stranger's name, as spoken by familiar and unfamiliar voices. Finally, a meta-analysis of self- and familiarity-related studies was conducted. Neural activity in the anterior brain regions, such as the anterior cingulate (ACC) and anterior insula (AI), was found to be specific for self-specific stimuli. In contrast, posterior brain regions, such as the posterior cingulate, were activated by familiar stimuli. Finally, the distinction between anterior and posterior regions for self and familiarity was confirmed by meta-analytic data. This study demonstrates a clear anterior-posterior cortical partition between self-specificity and familiarity.
The human visual system is extremely sensitive to biological signals around us. In the current study, we demonstrate that biological motion walking direction can induce robust reflexive attentional orienting. Following a brief presentation of a central point-light walker walking towards either the left or right direction, observers' performance was significantly better on a target in the walking direction compared with that in the opposite direction even when participants were explicitly told that walking direction was not predictive of target location. Interestingly, the effect disappeared when the walker was shown upside-down. Moreover, the reflexive attentional orienting could be extended to motions of other biological entities but not inanimate objects, and was not due to the viewpoint effect of the point-light figure. Our findings provide strong evidence that biological motion cues can trigger reflexive attentional orienting, and highlight the intrinsic sensitivity of the human visual attention system to biological signals.
Adaptive changes in respiratory and cardiovascular responses at high altitude (HA) have been well clarified. However, the central mechanisms underlying HA acclimatization remain unclear. Using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) with fractional anisotropy (FA) calculation, we investigated 28 Han immigrant residents (17–22 yr) born and raised at HA of 2616–4200 m in Qinghai-Tibetan Plateau for at least 17 years and who currently attended college at sea-level (SL). Their family migrated from SL to HA 2–3 generations ago and has resided at HA ever since. Control subjects were matched SL residents. HA residents (vs. SL) showed decreased grey matter volume in the bilateral anterior insula, right anterior cingulate cortex, bilateral prefrontal cortex, left precentral cortex, and right lingual cortex. HA residents (vs. SL) had significantly higher FA mainly in the bilateral anterior limb of internal capsule, bilateral superior and inferior longitudinal fasciculus, corpus callosum, bilateral superior corona radiata, bilateral anterior external capsule, right posterior cingulum, and right corticospinal tract. Higher FA values in those regions were associated with decreased or unchanged radial diffusivity coinciding with no change of longitudinal diffusivity in HA vs. SL group. Conversely, HA residents had lower FA in the left optic radiation and left superior longitudinal fasciculus. Our data demonstrates that HA acclimatization is associated with brain structural modifications, including the loss of regional cortical grey matter accompanied by changes in the white matter, which may underlie the physiological adaptation of residents at HA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.