Plants sense phosphate (Pi) deficiency and initiate signaling that controls adaptive responses necessary for Pi acquisition. Herein, evidence establishes that AtSIZ1 is a plant small ubiquitin-like modifier (SUMO) E3 ligase and is a focal controller of Pi starvation-dependent responses. T-DNA insertional mutated alleles of AtSIZ1 (At5g60410) cause Arabidopsis to exhibit exaggerated prototypical Pi starvation responses, including cessation of primary root growth, extensive lateral root and root hair development, increase in root/shoot mass ratio, and greater anthocyanin accumulation, even though intracellular Pi levels in siz1 plants were similar to wild type. AtSIZ1 has SUMO E3 ligase activity in vitro, and immunoblot analysis revealed that the protein sumoylation profile is impaired in siz1 plants. AtSIZ1-GFP was localized to nuclear foci. Steadystate transcript abundances of Pi starvation-responsive genes AtPT2, AtPS2, and AtPS3 were moderate but clearly greater in siz1 seedlings than in wild type, where Pi is sufficient. Pi starvation induced the expression of these genes to the same extent in siz1 and wild-type seedlings. However, two other Pi starvation-responsive genes, AtIPS1 and AtRNS1, are induced more slowly in siz1 seedlings by Pi limitation. PHR1, a MYB transcriptional activator of AtIPS1 and AtRNS1, is an AtSIZ1 sumoylation target. These results indicate that AtSIZ1 is a SUMO E3 ligase and that sumoylation is a control mechanism that acts both negatively and positively on different Pi deficiency responses
SIZ1 is a SUMO E3 ligase that facilitates conjugation of SUMO to protein substrates. siz1-2 and siz1-3 T-DNA insertion alleles that caused freezing and chilling sensitivities were complemented genetically by expressing SIZ1, indicating that the SIZ1 is a controller of low temperature adaptation in plants. Cold-induced expression of CBF/DREB1, particularly of CBF3/ DREB1A, and of the regulon genes was repressed by siz1. siz1 did not affect expression of ICE1, which encodes a MYC transcription factor that is a controller of CBF3/DREB1A. A K393R substitution in ICE1 [ICE1(K393R)] blocked SIZ1-mediated sumoylation in vitro and in protoplasts identifying the K393 residue as the principal site of SUMO conjugation. SIZ1-dependent sumoylation of ICE1 in protoplasts was moderately induced by cold. Sumoylation of recombinant ICE1 reduced polyubiquitination of the protein in vitro. ICE1(K393R) expression in wild-type plants repressed cold-induced CBF3/DREB1A expression and increased freezing sensitivity. Furthermore, expression of ICE1(K393R) induced transcript accumulation of MYB15, which encodes a MYB transcription factor that is a negative regulator of CBF/DREB1. SIZ1-dependent sumoylation of ICE1 may activate and/or stabilize the protein, facilitating expression of CBF3/DREB1A and repression of MYB15, leading to low temperature tolerance.
SummaryReversible modifications of target proteins by small ubiquitin-like modifier (SUMO) proteins are involved in many cellular processes in yeast and animals. Yet little is known about the function of sumoylation in plants.Here, we show that the SIZ1 gene, which encodes an Arabidopsis SUMO E3 ligase, regulates innate immunity. Mutant siz1 plants exhibit constitutive systemic-acquired resistance (SAR) characterized by elevated accumulation of salicylic acid (SA), increased expression of pathogenesis-related (PR) genes, and increased resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Transfer of the NahG gene to siz1 plants results in reversal of these phenotypes back to wild-type. Analyses of the double mutants, npr1 siz1, pad4 siz1 and ndr1 siz1 revealed that SIZ1 controls SA signalling. SIZ1 interacts epistatically with PAD4 to regulate PR expression and disease resistance. Consistent with these observations, siz1 plants exhibited enhanced resistance to Pst DC3000 expressing avrRps4, a bacterial avirulence determinant that responds to the EDS1/PAD4-dependent TIR-NBS-type R gene. In contrast, siz1 plants were not resistant to Pst DC3000 expressing avrRpm1, a bacterial avirulence determinant that responds to the NDR1-dependent CC-NBS-type R gene. Jasmonic acid (JA)-induced PDF1.2 expression and susceptibility to Botrytis cinerea were unaltered in siz1 plants. Taken together, these results demonstrate that SIZ1 is required for SA and PAD4-mediated R gene signalling, which in turn confers innate immunity in Arabidopsis.
SUMO (small ubiquitin-related modifier) conjugation (i.e., sumoylation) to protein substrates is a reversible posttranslational modification that regulates signaling by modulating transcription factor activity. This paper presents evidence that the SUMO E3 ligase SIZ1 negatively regulates abscisic acid (ABA) signaling, which is dependent on the bZIP transcription factor ABI5. Loss-of-function T-DNA insertion siz1-2 and siz1-3 mutations caused ABA hypersensitivity for seed germination arrest and seedling primary root growth inhibition. Furthermore, expression of genes that are ABA-responsive through ABI5-dependent signaling (e.g., RD29A, Rd29B, AtEm6, RAB18, ADH1) was hyperinduced by the hormone in siz1 seedlings. abi5-4 suppressed ABA hypersensitivity caused by siz1 (siz1-2 abi5-4), demonstrating an epistatic genetic interaction between SIZ1 and ABI5. A K391R substitution in ABI5 [ABI5(K391R)] blocked SIZ1-mediated sumoylation of the transcription factor in vitro and in Arabidopsis protoplasts, indicating that ABI5 is sumoylated through SIZ1 and that K391 is the principal site for SUMO conjugation. In abi5-4 plants, ABI5(K391R) expression caused greater ABA hypersensitivity (gene expression, seed germination arrest and primary root growth inhibition) compared with ABI5 expression. Together, these results establish that SIZ1-dependent sumoylation of ABI5 attenuates ABA signaling. The double mutant siz1-2 afp-1 exhibited even greater ABA sensitivity than the single mutant siz1, suggesting that SIZ1 represses ABI5 signaling function independent of AFP1.abscisic acid ͉ signaling ͉ SUMO ͉ sumoylation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.