Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by a core deficit in social processes. However, it is still unclear whether the core clinical symptoms of the disorder can be reflected by the temporal variability of resting-state network functional connectivity (FC). In this article, we examined the large-scale network FC temporal variability at the local region, within-network, and between-network levels using the fuzzy entropy technique. Then, we correlated the network FC temporal variability to social-related scores. We found that the social behavior correlated with the FC temporal variability of the precuneus, parietal, occipital, temporal, and precentral. Our results also showed that social behavior was significantly negatively correlated with the temporal variability of FC within the default mode network, between the frontoparietal network and cingulo-opercular task control network, and the dorsal attention network. In contrast, social behavior correlated significantly positively with the temporal variability of FC within the subcortical network. Finally, using temporal variability as a feature, we construct a model to predict the social score of ASD. These findings suggest that the network FC temporal variability has a close relationship with social behavioral inflexibility in ASD and may serve as a potential biomarker for predicting ASD symptom severity.
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder with severe cognitive impairment. Several studies have reported that brain functional network connectivity (FNC) has great potential for identifying ASD from healthy control (HC) and revealing the relationships between the brain and behaviors of ASD. However, few studies have explored dynamic large‐scale FNC as a feature to identify individuals with ASD. This study used a time‐sliding window method to study the dynamic FNC (dFNC) on the resting‐state fMRI. To avoid arbitrarily determining the window length, we set a window length range of 10–75 TRs (TR = 2 s). We constructed linear support vector machine classifiers for all window length conditions. Using a nested 10‐fold cross‐validation framework, we obtained a grand average accuracy of 94.88% across window length conditions, which is higher than those reported in previous studies. In addition, we determined the optimal window length using the highest classification accuracy of 97.77%. Based on the optimal window length, we found that the dFNCs were located mainly in dorsal and ventral attention networks (DAN and VAN) and exhibited the highest weight in classification. Specifically, we found that the dFNC between DAN and temporal orbitofrontal network (TOFN) was significantly negatively correlated with social scores of ASD. Finally, using the dFNCs with high classification weights as features, we construct a model to predict the clinical score of ASD. Overall, our findings demonstrated that the dFNC could be a potential biomarker to identify ASD and provide new perspectives to detect cognitive changes in ASD.
Autism spectrum disorder (ASD) is a pervasive developmental disorder with severe cognitive impairment in social communication and interaction. Previous studies have reported that abnormal functional connectivity patterns within the default mode network (DMN) were associated with social dysfunction in ASD. However, how the altered causal connectivity pattern within the DMN affects the social functioning in ASD remains largely unclear. Here, we introduced the Liang information flow method, widely applied to climate science and quantum mechanics, to uncover the brain causal network patterns in ASD. Compared with the healthy controls (HC), we observed that the interactions among the dorsal medial prefrontal cortex (dMPFC), ventral medial prefrontal cortex (vMPFC), hippocampal formation, and temporo‐parietal junction showed more inter‐regional causal connectivity differences in ASD. For the topological property analysis, we also found the clustering coefficient of DMN and the In‐Out degree of anterior medial prefrontal cortex were significantly decreased in ASD. Furthermore, we found that the causal connectivity from dMPFC to vMPFC was correlated with the clinical symptoms of ASD. These altered causal connectivity patterns indicated that the DMN inter‐regions information processing was perturbed in ASD. In particular, we found that the dMPFC acts as a causal source in the DMN in HC, whereas it plays a causal target in ASD. Overall, our findings indicated that the Liang information flow method could serve as an important way to explore the DMN causal connectivity patterns, and it also can provide novel insights into the nueromechanisms underlying DMN dysfunction in ASD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.