Myopia is increasing worldwide and its preventable measure should urgently be pursued. N‐3 polyunsaturated fatty acids (PUFAs) have been reported to have various effects such as vasodilative and anti‐inflammatory, which myopia may be involved in. This study is to investigate the inhibitory effect of PUFAs on myopia progression. A lens‐induced myopia (LIM) model was prepared using C57B L6/J 3‐week‐old mice, which were equipped with a −30 diopter lens to the right eye. Chows containing two different ratios of n‐3/n‐6 PUFA were administered to the mice, and myopic shifts were confirmed in choroidal thickness, refraction, and axial length in the n‐3 PUFA‐enriched chow group after 5 weeks. To exclude the possibility that the other ingredients in the chow may have taken the suppressive effect, fat‐1 transgenic mice, which can produce n‐3 PUFAs endogenously, demonstrated significant suppression of myopia. To identify what elements in n‐3 PUFAs took effects on myopia suppression, enucleated eyes were used for targeted lipidomic analysis, and eicosapentaenoic acid (EPA) were characteristically distributed. Administration of EPA to the LIM model confirmed the inhibitory effect on choroidal thinning and myopia progression. Subsequently, to identify the elements and the metabolites of fatty acids effective on myopia suppression, targeted lipidomic analysis was performed and it demonstrated that metabolites of EPA were involved in myopia suppression, whereas prostaglandin E2 and 14,15‐dihydrotestosterone were associated with progression of myopia. In conclusion, EPA and its metabolites are related to myopia suppression and inhibition of choroidal thinning.
Myopia is becoming more common across the world, necessitating the development of preventive methods. We investigated the activity of early growth response 1 (EGR-1) protein and discovered that Ginkgo biloba extracts (GBEs) activated EGR-1 in vitro. In vivo, C57BL/6 J mice were fed either normal or 0.0667% GBEs (200 mg/kg) mixed chow (n = 6 each), and myopia was induced with − 30 diopter (D) lenses from 3 to 6 weeks of age. Refraction and axial length were measured by an infrared photorefractor and an SD-OCT system, respectively. In lens-induced myopia mice, oral GBEs significantly improved refractive errors (− 9.92 ± 1.53 D vs. − 1.67 ± 3.51 D, p < 0.001) and axial elongation (0.22 ± 0.02 mm vs. 0.19 ± 0.02 mm, p < 0.05). To confirm the mechanism of GBEs in preventing myopia progression, the 3-week-old mice were divided into normally fed with either myopic-induced or non-myopic-induced groups and GBEs fed with either myopic-induced or non-myopic-induced groups (n = 10 each). Choroidal blood perfusion was measured with optical coherence tomography angiography (OCTA). In both non-myopic induced groups, compared to normal chow, oral GBEs significantly improved choroidal blood perfusion (8.48 ± 15.75%Area vs. 21.74 ± 10.54%Area, p < 0.05) and expression of Egr-1 and endothelial nitric oxide synthase (eNOS) in the choroid. In both myopic-induced groups, compared to normal chow, oral GBEs also improved choroidal blood perfusion (− 9.82 ± 9.47%Area vs. 2.29 ± 11.84%Area, p < 0.05) and was positively correlated with the change in choroidal thickness. These findings suggest that GBEs may inhibit the progression of myopia by improving choroidal blood perfusion.
Myopia is a primary contributor to visual impairment and has emerged as a global public health concern. Evidence indicates that one of the main structural features of myopia is the corresponding decrease in choroidal thickness, and choroidal macrophages play an important role in maintaining the choroidal thickness. Nevertheless, the effect of choroidal macrophages on myopia remains unclear. Here, we discovered that the continuous intraperitoneal injection of clodronate liposomes depleted choroidal macrophages and leads to myopia, which confirmed that the presence of choroidal macrophages plays an important role in myopia development. Subsequently, based on the phenotypic characteristics of macrophages, experiments were designed to study the effects of different polarization directions of macrophages on myopia development. We found that lipopolysaccharides (LPS) injection can induce the polarization of choroidal M1 macrophages and result in myopia. Conversely, IL-4 or IL-13 injection causes choroidal M2 macrophage polarization and suppresses the progression of myopia. Additionally, we demonstrated that the opposite effects of M1 and M2 macrophages on myopia development may be related to their impacts on inflammation and oxidative stress response. These findings establish that choroidal macrophages are critically important in the development of myopia and provide new strategies for the development of myopic therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.