Heat pipes (HPs) are being extensively explored in motor cooling scenarios for enhanced cooling capacity. HPs are commonly bent to adapt to the compact structure of electrical machines, whereas the bending effect on motor cooling effectiveness still requires further investigation. This article analytically and experimentally studies the effect of the bending process, including bending angle and bending radius, on HP thermal properties. Cooling density is defined and derived to analyze the tradeoff between HP thermal performance and additional volume due to HP installation. Practical guidelines for feasible HP bending solutions under different space constraints are provided to achieve a higher cooling density. Finally, the HP bending effect on motor cooling effectiveness under various cooling methods is quantitatively evaluated through a validated thermal model based on a stator-winding assembly. The bending process can degrade the HP equivalent thermal conductivity by up to 76%, thus leading to a temperature difference of 4.8K under liquid cooling conditions.
Implementation of proportional-integral (PI) controllers in synchronous reference frame (SRF) is a wellestablished current control solution for electric drives. It is a general and effective method in digital control as long as the ratio of Sampling to Fundamental (S2F) frequency ratio, rS2F, remains sufficiently large. When the aforesaid condition is violated, such as operations in high-speed or high-power drives, the performance of the closed-loop system becomes incrementally poor or even unstable. This is due to the cross-coupling of the signal flow between d and q axes, which is introduced by the SRF. In this article, an accurate model of current dynamics which captures the computational delay and PWM characteristics in discrete time domain is developed. This motivates the investigation of eliminating cross-coupling effects in PMSM drive systems. A new current control structure in the discrete time domain is proposed targeting full compensation of cross-coupling effects of SRF whilst improving dynamic stiffness at low S2F ratios. The matching simulation and experimental results carried out on a 5-kW high speed drive corroborate the theoretical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.