MicroRNAs (miRNAs) have been shown to be dysregulated in virus-related cancers; however, miRNA regulation of virus-related cancer development and progression remains poorly understood. Here, we report that miR-148a is repressed by hepatitis B virus (HBV) X protein (HBx) to promote cancer growth and metastasis in a mouse model of hepatocellular carcinoma (HCC). Hematopoietic pre-B cell leukemia transcription factor-interacting protein (HPIP) is an important regulator of cancer cell growth. We used miRNA target prediction programs to identify miR-148a as a regulator of HPIP. Expression of miR-148a in hepatoma cells reduced HPIP expression, leading to repression of AKT and ERK and subsequent inhibition of mTOR through the AKT/ERK/FOXO4/ATF5 pathway. HBx has been shown to play a critical role in the molecular pathogenesis of HBV-related HCC. We found that HBx suppressed p53-mediated activation of miR-148a. Moreover, expression of miR-148a was downregulated in patients with HBV-related liver cancer and negatively correlated with HPIP, which was upregulated in patients with liver cancer. In cultured cells and a mouse xenograft model, miR-148a reduced the growth, epithelial-to-mesenchymal transition, invasion, and metastasis of HBx-expressing hepatocarcinoma cells through inhibition of HPIP-mediated mTOR signaling. Thus, miR-148a activation or HPIP inhibition may be a useful strategy for cancer treatment.
IntroductionThe four-and-a-half LIM (FHL) proteins are characterized by 4 complete LIM domains preceded by an N-terminal half LIM domain (1). LIM domains are cysteine-rich zinc finger motifs involved in a wide range of protein-protein interactions. Amino acid sequence comparisons reveal that FHL proteins are more than 40% identical.
Dietary polyphenols have been correlated with a reduced risk of developing cancer. Quercetin (a natural polyphenolic compound) induced apoptosis in many human cancer cell lines, including breast cancer MCF-7 cells. However, the involvement of possible signaling pathways and the roles of quercetin in apoptosis are still undefined. The purpose of this study was to investigate the effects of quercetin on the induction of the apoptotic pathway in human breast cancer MCF-7 cells. When MCF-7 cells were treated with quercetin for 24 and 48 h and at various doses (10-175 microM), cell viability decreased significantly in time- and dose-dependent manners. Exposure of MCF-7 cells to 10-175 microM quercetin resulted in an approximate 90.25% decrease in viable cells. To explicate the mechanism underlying the antiproliferative effect of quercetin, cell cycle distribution and apoptosis in MCF-7 cells was investigated after exposure to 150 microM quercetin for 6-48 h. Quercetin caused a remarkable increase in the number of S phase (14.56% to 61.35%) and sub-G1 phase cells (0.1% to 8.32%) in a dose- and time-dependent manner. Quercetin caused S phase arrest by decreasing the protein expression of CDK2, cyclins A and B while increasing the p53 and p57 proteins. Following incubation with quercetin for 48 h, MCF-7 cells showed apoptotic cell death by the decreased levels of Bcl-2 protein and DeltaPsi(m) and increased activations of caspase-6, -8 and -9. Moreover, quercetin increased the AIF protein released from mitochondria to nuclei and the GADD153 protein translocation from endoplasmic reticulum to the nuclei. These data suggested that quercetin may induce apoptosis by direct activation of the caspase cascade through the mitochondrial pathway in MCF-7 cells.
CD147 plays a critical role in the invasive and metastatic activity of malignant melanoma cells by stimulating the surrounding fibroblasts to express matrix metalloproteinases and vascular endothelial growth factor. We developed a system that blocks CD147 in the human malignant melanoma cell line, A375, using RNA interference. By transfecting melanoma cells with the small interfering RNA (siRNA) that targets human CD147, we were able to establish two stable clones in which CD147 expression was significantly downregulated. This resulted in the decreased proliferation and invasion of A375 cells in vitro. CD147 siRNA also downregulated the expression of vascular endothelial growth factor in these cells and reduced the migration of vascular endothelial cells. The reduction in the CD147 level suppressed the size of s.c. tumors and the microvessel density in an A375 s.c. nude mouse xenograft model. In addition, the in vivo metastatic potential of A375 cells transfected with CD147 siRNA was suppressed in a nude mouse model of pulmonary metastasis. (Cancer Res 2006; 66(23): 11323-30)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.