BackgroundThis study hopes to establish the timeframe for a safe return to driving under different speed conditions for patients after minimally invasive total knee arthroplasty and further explores how well various kinds of functional tests on knee performance can predict the patients’ braking ability.Methods14 patients with right knee osteoarthritis were included in the present study and instructed to perform three simulated driving tasks at preoperative, 2 weeks postoperative and 4 weeks postoperative.ResultsThe results showed that the total braking time at 4 week postoperative has attained the preoperative level at the driving speed 50 and 70 km/hr but not at the driving speed 90 km/hr. It had significantly improving in knee reaction time and maximum isometric force at 4 weeks postoperative. Besides, there was a moderate to high correlation between the scores of the step counts and the total braking time.ConclusionsSummary, it is recommended that driving may be resumed 4 weeks after a right knee replacement but had to drive at low or moderate speed and the best predictor of safety driving is step counts.
The results of this study suggest that women with PMS could attend short-term yoga exercise in the luteal phase to make themselves feel better and maintain a better attention level.
To protect the Achilles tendon, AT-Achilles taping is recommended since it tends to decrease ATF. Conversely, to enhance athlete performance, we recommend KT-Achilles taping to speed up kendo striking motion. However, the Achilles tendon must withstand greatest forces concurrently. This finding implies that AT-Achilles taping can protect the injured Achilles tendon and KT-Achilles taping can enhance performance on the kendo striking motion.
Background: This study aimed to understand individual muscle use in different paddling postures in stand-up paddle boarding (SUP). Methods: Sixteen college students were recruited in this study. Surface electromyography of 16 muscles on the dominant side was recorded. Results: In the time series, the biceps muscle exhibited a continuous activation pattern in the pull phase when kneeling, whereas when standing, the muscle contracted considerably in the exit and recovery phases, implying that it plays different roles in the two postures. The biceps also exhibited significantly higher muscle activation in the kneeling position than it did in the standing position. The maximum muscle activity levels of the external oblique abdominis and triceps were significantly higher when standing than when kneeling. In addition, an unstable SUP board activated the gastrocnemius to help paddlers maintain stability on a swaying surface. Moreover, additional power from the wrist flexor must be used in the recovery and catch phases to stabilize paddle control in the standing position. Conclusion: The knowledge that changes in SUP posture activate different muscle groups can enhance training efficiency and provide a reference for designing individualized training programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.