Glioma is the most common central nervous system tumor and associated with poor prognosis. Identifying effective diagnostic biomarkers for glioma is particularly important in order to guide optimizing treatment. MicroRNAs (miRNAs) have drawn much attention because of their diagnostic value in diverse cancers, including glioma. We summarized studies to identify the potential diagnostic values of miRNAs in glioma patients. We included articles reporting miRNAs for differentiation of glioma patients from controls. We calculated sensitivities, specificities, and area under the curves (AUC) of individual miRNA and miRNA panels. We found that overall sensitivity, specificity, and AUC of miRNAs in diagnosis of glioma were 85% (95% confidence interval [CI]: 0.81‐0.89), 90% (95% CI 0.85‐0.93), and 93% (95% CI 0.91‐0.95), respectively. Meta‐regression analysis showed that the detection of miRNAs expression in cerebrospinal fluid (CSF) and brain tissue largely improved the diagnostic accuracy. Likewise, panels of multiple miRNAs could enhance the pooled sensitivity. Moreover, AUC of miR‐21 was 0.88, with 86% sensitivity and 94% specificity. This study demonstrated that miRNAs could function as potential diagnosis markers in glioma. Detection of miRNAs in CSF and brain tissue displays high accuracy in the diagnosis of glioma.
BackgroundBladder cancer is one of the most common urinary malignancies, and has a high recurrence rate and poor outcomes. In order to identify novel diagnostic and prognostic biomarkers for bladder cancer, we conducted a meta-analysis to analyze the association between long non-coding RNA (lncRNA) expression and survival in bladder cancer.Materials and methodsWe searched literature from databases using our inclusion and exclusion criteria. STATA 14.0 software was used to analyze the data from collected studies and to construct the forest plots. A different effect size was selected for each meta-analysis.ResultsAfter selection, 30 articles were found to be eligible. The present meta-analysis contains data from 13 articles about clinicopathological characteristics, six articles about diagnosis, and 16 articles about prognosis. In the present study, we found that many lncRNAs could function as potential diagnostic and prognostic markers in bladder cancer. Among these findings, UCA1 was expected to be a diagnostic biomarker for bladder cancer, while the aberrant expression of HOTAIR and GAS5 was associated with poor disease-free survival/recurrence-free survival/disease-specific survival.ConclusionOverall, the present study is the first meta-analysis to assess the association between expression of lncRNAs and clinical value in patients with bladder cancer. LncRNAs hold promise as novel diagnostic and prognostic markers in bladder cancer.
Ferroptosis is a recently identified nonapoptotic form of cell death whose major markers are iron dependence and accumulation of lipid reactive oxygen species, accompanied by morphological changes such as shrunken mitochondria and increased membrane density. It appears to contribute to the death of tumors, ischemia-reperfusion, acute renal failure, and nervous system diseases, among others. The generative mechanism of ferroptosis includes iron overloading, lipid peroxidation, and downstream execution, while the regulatory mechanism involves the glutathione/glutathione peroxidase 4 pathway, as well as the mevalonate pathway and the transsulfuration pathway. In-depth research has continuously developed and enriched knowledge on the mechanism by which ferroptosis occurs. In recent years, reports of the noninterchangeable role played by selenium in glutathione peroxidase 4 and its function in suppressing ferroptosis and the discovery of ferroptosis suppressor protein 1, identified as a ferroptosis resistance factor parallel to the glutathione peroxidase 4 pathway, have expanded and deepened our understanding of the mechanism by which ferroptosis works. Ferroptosis has been reported in spinal cord injury animal model experiments, and the inhibition of ferroptosis could promote the recovery of neurological function. Here, we review the latest studies on mechanism by which ferroptosis occurs, focusing on the ferroptosis execution and the contents related to selenium and ferroptosis suppressor protein 1. In addition, we summarize the current research status of ferroptosis in spinal cord injury. The aim of this review is to better understand the mechanisms by which ferroptosis occurs and its role in the pathophysiological process of spinal cord injury, so as to provide a new idea and frame of reference for further exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.