Chemical doping with foreign atoms is an effective method to intrinsically modify the properties of the host materials. In this paper, we report a facile strategy to prepare nitrogen and boron doped monolayer graphene by using urea and boric acid as solid precursors. By adjusting the elemental precursors, the nitrogen content could be modulated from 0.9 to 4.8% for nitrogen doped graphene and the boron content from 0.7 to 4.3% for boron doped graphene respectively, as estimated by X-ray photoelectron spectroscopy. The mobilities of the nitrogen and boron doped graphene-based back-gate field-effect transistors are about 350-550 cm 2 V À1 s À1 and 450-650 cm 2 V À1 s À1 respectively. Our results are better than plasma treated nitrogen and boron doped graphene. Therefore the synthesis of nitrogen and boron doped graphene sheets by a solid doping elemental precursor method is considered to be an efficient approach to producing graphene with excellent optical and electrical performances at relatively low cost.
Polycaprolactone (PCL) has been widely adopted as a scaffold biomaterial, but further improvement of the hemocompatibility of a PCL film surface is still needed for wide biomedical applications. In this work, the PCL film surface was functionalized with zwitterionic poly(3-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate) (P(DMAPS)) brushes via surface-initiated atom transfer radical polymerization (ATRP) for enhancing hemocompatibility. Kinetics study revealed an approximately linear increase in graft yield of the functional P(DMAPS) brushes with polymerization time. The blood compatibilities of the modified PCL film surfaces were studied by platelet adhesion tests of platelet-rich plasma and human whole blood, hemolysis assay, and plasma recalcification time (PRT) assay. The improvement of hemocompatibility is dependent on the coverage of the grafted P(DMAPS) brushes on the PCL film. Lower or no platelet and blood cell adhesion was observed on the P(DMAPS)-grafted film surfaces. The P(DMAPS) grafting can further decrease hemolysis and enhance the PRT of the PCL surface. With the versatility of surface-initiated ATRP and the excellent hemocompatibility of zwitterionic polymer brushes, PCL films with desirable blood properties can be readily tailored to cater to various biomedical applications.
We demonstrate a new strategy for improved stabilization of polydiacetylene micelles. They show temperature-induced color changes, which are fully reversible even at varying pH. A novel azo chromophore-functionalized amphiphilic diacetylene molecule is synthesized and used to prepare self-assembled cylindrical micelles. The micelles can be polymerized by 254 nm light irradiation. The azo chromophores form H- and J-like aggregates in the polydiacetylene micelles and increase the stability of the micelles, which leads to fully reversible thermochromism of the micelles in the temperature range between 20 and 90 °C and the pH range between 5.6 and 9.6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.