Background Given the projected trends in population ageing and population growth, the number of people with dementia is expected to increase. In addition, strong evidence has emerged supporting the importance of potentially modifiable risk factors for dementia. Characterising the distribution and magnitude of anticipated growth is crucial for public health planning and resource prioritisation. This study aimed to improve on previous forecasts of dementia prevalence by producing country-level estimates and incorporating information on selected risk factors. MethodsWe forecasted the prevalence of dementia attributable to the three dementia risk factors included in the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 (high body-mass index, high fasting plasma glucose, and smoking) from 2019 to 2050, using relative risks and forecasted risk factor prevalence to predict GBD risk-attributable prevalence in 2050 globally and by world region and country. Using linear regression models with education included as an additional predictor, we then forecasted the prevalence of dementia not attributable to GBD risks. To assess the relative contribution of future trends in GBD risk factors, education, population growth, and population ageing, we did a decomposition analysis. FindingsWe estimated that the number of people with dementia would increase from 57•4 (95% uncertainty interval 50•4-65•1) million cases globally in 2019 to 152•8 (130•8-175•9) million cases in 2050. Despite large increases in the projected number of people living with dementia, age-standardised both-sex prevalence remained stable between 2019 and 2050 (global percentage change of 0•1% [-7•5 to 10•8]). We estimated that there were more women with dementia than men with dementia globally in 2019 (female-to-male ratio of 1•69 [1•64-1•73]), and we expect this pattern to continue to 2050 (female-to-male ratio of 1•67 [1•52-1•85]). There was geographical heterogeneity in the projected increases across countries and regions, with the smallest percentage changes in the number of projected dementia cases in high-income Asia Pacific (53% [41-67]) and western Europe (74% [58-90]), and the largest in north Africa and the Middle East (367% [329-403]) and eastern sub-Saharan Africa (357% [323-395]). Projected increases in cases could largely be attributed to population growth and population ageing, although their relative importance varied by world region, with population growth contributing most to the increases in sub-Saharan Africa and population ageing contributing most to the increases in east Asia. Interpretation Growth in the number of individuals living with dementia underscores the need for public health planning efforts and policy to address the needs of this group. Country-level estimates can be used to inform national planning efforts and decisions. Multifaceted approaches, including scaling up interventions to address modifiable risk factors and investing in research on biological mechanisms, will be key in addressing the expected incr...
No abstract
The C3H ⁄ HeJ inbred mouse strain and the Dundee Experimental Bald Rat (DEBR) strain spontaneously develop adult onset alopecia areata (AA), a cell-mediated disease directed against actively growing hair follicles. The low frequency of AA and the inability to predict the stage of AA as it evolves in the naturally occuring C3H ⁄ HeJ model of AA can be converted into a highly predictable system by grafting full thickness skin from AA-affected mice to normal haired mice of the same strain. The rat DEBR model develops spontaneous AA at a higher frequency than in the mouse model but they are more expensive to use in drug studies owing to their larger size. Regardless of the shortcomings of either model, these rodent models can be used succesfully to screen novel or approved drugs for efficacy to treat human AA. As the pathogenesis of AA follows the canonical lymphocytic co-stimulatory cascade in the mouse AA model, it can be used to screen compounds potentially useful to treat a variety of cellmediated diseases. Efficacy of various agents can easily be screened by simply observing the presence, rate, and cosmetic acceptability of hair regrowth. More sophisticated assays can refine how the drugs induce hair regrowth and evaluate the underlying pathogenesis of AA. Some drugs commonly used to treat human AA patients work equally as well in both rodent models validating their usefulness as models for drug efficacy and safety for humanAA.Key words: alopecia areata -animal modeldinitrochlorobenzene -diphenylcyclopropenone -reviewsquaric acid dibutyl esterase -treatment Please cite this paper as: The C3H ⁄ HeJ mouse and DEBR rat models for alopecia areata: review of preclinical drug screening approaches and results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.