Rheumatoid arthritis (RA) is a systemic, inflammatory, and autoimmune disorder. Gut microbiota play an important role in the etiology of RA. With the considerable progress made in next-generation sequencing techniques, the identified gut microbiota difference between RA patients and healthy individuals provides an updated overview of the association between gut microbiota and RA. We reviewed the reported correlation and underlying molecular mechanisms among gut microbiota, the immune system, and RA. It has become known that gut microbiota contribute to the pathogenesis of RA via multiple molecular mechanisms. The progressive understanding of the dynamic interaction between gut microbiota and their host will help in establishing a highly individualized management for each RA patient, and achieve a better efficacy in clinical practice, or even discovering new drugs for RA.
Gastrointestinal dysfunction plays an important role in the occurrence and development of Parkinson’s disease (PD). This study investigates the composition of the gut microbiome using shotgun metagenomic sequencing in PD patients in central China. Fecal samples from 39 PD patients (PD group) and the corresponding 39 healthy spouses of the patients (SP) were collected for shotgun metagenomics sequencing. Results showed a significantly altered microbial composition in the PD patients. Bilophila wadsworthia enrichment was found in the gut microbiome of PD patients, which has not been reported in previous studies. The random forest (RF) model, which identifies differences in microbiomes, reliably discriminated patients with PD from controls; the area under the receiver operating characteristic curve was 0.803. Further analysis of the microbiome and clinical symptoms showed that Klebsiella and Parasutterella were positively correlated with the duration and severity of PD, whereas hydrogen-generating Prevotella was negatively correlated with disease severity. The Cluster of Orthologous Groups of protein database, the KEGG Orthology database, and the carbohydrate-active enzymes of gene-category analysis showed that branched-chain amino acid–related proteins were significantly increased, and GH43 was significantly reduced in the PD group. Functional analysis of the metagenome confirmed differences in microbiome metabolism in the PD group related to short-chain fatty acid precursor metabolism.
BackgroundThe diagnosis of Parkinson’s disease (PD) is complex and there are no biomarkers for early identification. Many studies have reported altered gut microbiota in patients with PD compared with healthy individuals. However, results from previous studies vary across countries.AimsThe aim of this study was to identify gut microbiota biomarkers that could be used as a marker for the diagnosis of PD.MethodsFirstly, the differential gut microbiota was obtained by meta-analysis, and then the results of meta-analysis were validated through metagenomic cohort. Finally, the ROC curve was drawn based on the metagenomic validation results.ResultsThe meta-analysis showed a lower relative abundance of Prevotellaceae (p < 0.00001) and Lachnospiraceae (p = 0.002), and a higher of Ruminococcaceae (p < 0.00001), Christensenellaceae (p = 0.03), Bifidobacteriaceae (p < 0.00001), and Verrucomicrobiaceae (p = 0.02) in patients with PD. Only Bifidobacteriaceae was also at high levels in the validation cohort of the metagenome. Meanwhile, three species from the Bifidobacteriaceae, including Scardovia_inopinata (p = 0.022), Bifidobacterium_dentium (p = 0.005), and Scardovia_wiggsiae (p = 0.024) were also high. The ROC curve showed that the three species (71.2%) from Bifidobacteriaceae had good predictive efficiency for PD.ConclusionElevated Bifidobacteriaceae may be associated with PD. Elevated three species from the Bifidobacteriaceae, including Scardovia_inopinata, Bifidobacterium_dentium and Scardovia_wiggsiae may provide new potential biomarkers for the diagnosis of PD.
Scope As a natural dietary low‐molecular‐weight thiol, pantethine helps maintain brain homeostasis and function in Alzheimer's disease (AD) mice. The current study aims to investigate the protective effects and underlying mechanisms of pantethine on the mitigation of cognitive deficits and pathology in a triple transgenic AD mouse model. Methods and results Compared to control mice, oral administration of pantethine improve spatial learning and memory ability, relieve anxiety, and reduce the production of amyloid‐β (Aβ), neuronal damage, and inflammation in 3×Tg‐AD mice. Pantethine reduces body weight, body fat, and the production of cholesterol in 3×Tg‐AD mice by inhibiting sterol regulatory element‐binding protein (SREBP2) signal pathway and apolipoprotein E (APOE) expression; lipid rafts in the brain, which are necessary for the processing of the Aβ precursor protein (APP), are also decreased. In addition, pantethine regulates the composition, distribution, and abundance of characteristic flora in the intestine; these floras are considered protective and anti‐inflammatory in the gastrointestinal tract, suggesting a possible improvement in the gut flora of 3×Tg‐AD mice. Conclusion This study highlights the potential therapeutic effect of pantethine in AD by reducing cholesterol and lipid raft formation and regulating intestinal flora, suggesting a new option for the development of clinical drugs for AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.