Activation of hepatic stellate cells (HSCs) is the dominant event in liver fibrosis. The early events in the organization of HSC activation have been termed initiation. Initiation encompasses rapid changes in gene expression and phenotype that render the cells responsive to cytokines and other local stimuli. Cellular responses following initiation are termed perpetuation, which encompasses those cellular events that amplify the activated phenotype through enhanced growth factor expression and responsiveness. Multiple cells and cytokines play a part in the regulation of HSC activation. HSC activation consists of discrete phenotype responses, mainly proliferation, contractility, fibrogenesis, matrix degradation, chemotaxis and retinoid loss. Currently, antifibrotic therapeutic strategies include inhibition of HSC proliferation or stimulation of HSC apoptosis, downregulation of collagen production or promotion of its degradation, administration of cytokines, and infusion of mesenchymal stem cells. In this review, we summarize the latest advances in our understanding of the mechanisms of HSC activation and possible antifibrotic therapeutic strategies.
Helium (He) bubbles are typical radiation defects in structural materials in nuclear reactors after high dose energetic particle irradiation. In the past decades, extensive studies have been conducted to explore the dynamic evolution of He bubbles under various conditions and to investigate He-induced hardening and embrittlement. In this review, we summarize the current understanding of the behavior of He bubbles in metals; overview the mechanisms of He bubble nucleation, growth, and coarsening; introduce the latest methods of He control by using interfaces in nanocrystalline metals and metallic multilayers; analyze the effects of He bubbles on strength and ductility of metals; and point out some remaining questions related to He bubbles that are crucial for design of advanced radiation-tolerant materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.