Resin-based materials have been prevalent for dental restorations over the past few decades and have been widely used for a variety of direct and indirect procedures. Typically, resin-based dental materials are required to be flowable or moldable before setting and can provide adequate mechanical strength after setting. The setting method may include, but is not limited to, light-curing, self-curing or heating. In this review, based on different indications of resin-based dental materials (e.g., dental filling composite, dental bonding agent, resin luting cement), their rheological and mechanical properties were reviewed. Viscous and flexible properties were focused on for materials before setting, while elastic properties and mechanical strength were focused on for materials after setting. At the same time, the factors that may affect their rheological and mechanical properties were discussed. It is anticipated that the insightful information and prospections of this study will be useful to the future development and fabrication of resin-based dental restorative materials.
Dental resin composites have been widely used in a variety of direct and indirect dental restorations due to their aesthetic properties compared to amalgams and similar metals. Despite the fact that dental resin composites can contribute similar mechanical properties, they are more likely to have microbial accumulations leading to secondary caries. Therefore, the effective and long-lasting antimicrobial properties of dental resin composites are of great significance to their clinical applications. The approaches of ascribing antimicrobial properties to the resin composites may be divided into two types: The filler-type and the resin-type. In this review, the resin-type approaches were highlighted. Focusing on the antimicrobial polymers used in dental resin composites, their chemical structures, mechanical properties, antimicrobial effectiveness, releasing profile, and biocompatibility were included, and challenges, as well as future perspectives, were also discussed.
Polyester thin film composite (PE-TFC) membranes featuring excellent chlorine-resistant property hold grand promise in seawater desalination and wastewater treatment. However, the low reactivity of alcohol or phenolic hydroxyl groups with...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.