a b s t r a c tThe antineoplastic target aldo-keto reductase family member 1B10 (AKR1B10) and the critical polyol pathway enzyme aldose reductase (AKR1B1) share high structural similarity. Crystal structures reported here reveal a surprising Trp112 native conformation stabilized by a specific Gln114-centered hydrogen bond network in the AKR1B10 holoenzyme, and suggest that AKR1B1 inhibitors could retain their binding affinities toward AKR1B10 by inducing Trp112 flip to result in an ''AKR1B1-like'' active site in AKR1B10, while selective AKR1B10 inhibitors can take advantage of the broader active site of AKR1B10 provided by the native Trp112 side-chain orientation.
Two voltage-gated calcium channel subtypes—CaV1.2 and CaV1.3—underlie the major L-type Ca2+ currents in the mammalian central nervous system. Owing to their high sequence homology, the two channel subtypes share similar pharmacological properties, and at high doses classic calcium channel blockers, such as dihydropyridines, phenylalkylamines and benzothiazepines, do not discriminate between the two channel subtypes. Recent progress in treating Parkinson’s disease (PD) was marked by the discovery of synthetic compound 8, which was reported to be a highly selective inhibitor of the CaV1.3 L-type calcium channels (LTCC). However, despite a previously reported IC50 of ~24 μM, in our hands inhibition of the full-length CaV1.342 by compound 8 at 50 μM reaches a maximum of 45%. Moreover, we find that the selectivity of compound 8 towards CaV1.3 relative to CaV1.2B15 channels is greatly influenced by the β-subunit type and its splice isoform variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.