ABL1 tyrosine-kinase inhibitors (TKI) are a front-line therapy for chronic myelogenous leukemia and represent the best known examples of targeted cancer therapeutics. However, the dynamic uptake of low molecular weight TKIs into cells and their intracellular behavior is largely unknown due to the difficulty of observing non-fluorescent small molecules at subcellular resolution. Here we report the direct label-free visualization and quantification of two TKI drugs – imatinib and nilotinib inside living cells using hyperspectral stimulated Raman scattering imaging. Both drugs were enriched over 1000-fold in lysosomes as a result of their lysosomotropic properties. In addition, low solubility appeared to contribute significantly to the surprisingly large accumulation of nilotinib. We further show that the lysosomal trapping of imatinib was reduced by more than 10-fold when using chloroquine simultaneously, suggesting that chloroquine may increase the efficacy of TKIs through lysosome mediated drug-drug interaction besides the commonly proposed autophagy inhibition mechanism.
BackgroundThe predictive potentials of neck circumference (NC) for cardio-metabolic risks remain uncertain. The aim of this study was to investigate whether NC independently contributes to the prediction of cardio-metabolic risks beyond body mass index (BMI), waist circumference (WC) and waist to hip ratio (WHpR) in a large Chinese population.MethodsA total of 4201 participants (2508 men and 1693 women) aged 20-85 were recruited from the Health Examination Centre between May 2009 and April 2010, anthropometric indices, biochemical and clinical parameters were measured. Receiver operating characteristic, partial correlation and logistic regression analyses were employed to evaluate the association of the anthropometric indices to cardio-metabolic risks separately by gender.ResultsNeck circumference was positively correlated with SBP and DBP (r=0.250 and 0.261), fasting blood glucose (FBP) (r=0.177), TG (r=0.240), TC (r=0.143) and LDL-C (r=0.088) and negatively correlated with HDL-C (r=-0.202) in males (all P<0.01). Similar results were found in females with the exception of TC. The AUCs of NC for metabolic abnormalities ranged from 0.558 (Increased LDL-C) to 0.683 (MS-rf) in men and 0.596 (Increased LDL-C) to 0.703 (MS-rf) in women (P<0.01). The NC of ≥37 cm for men and ≥33 cm for women were the best cut-off points for metabolic syndrome. The adjusted ORs (95% CIs) of NC in men and women respectively were 1.29 (1.12-1.48) and 1.44 (1.20-1.72) for metabolic syndrome risk factors (MS-rf), 1.15 (1.01-1.32) and 1.22 (1.03-1.46) for high BP, 1.16 (1.02-1.33) and 1.42 (1.18-1.71) for increased TG, and 1.26 (1.06-1.50) and 1.32 (1.06-1.65) for increased FBP; the adjusted OR of NC in women for decreased HDL-C was 1.29 (1.10-1.51).ConclusionsNeck circumference was significantly associated with cardio-metabolic risk factors and independently contributed to the prediction of cardio-metabolic risks beyond the classical anthropometric indices in adults of China.
Viral replication relies on the host to supply nucleosides. Host enzymes involved in nucleoside biosynthesis are potential targets for antiviral development. Ribavirin (a known antiviral drug) is such an inhibitor that suppresses guanine biosynthesis; depletion of the intracellular GTP pool was shown to be the major mechanism to inhibit flavivirus. Along similar lines, inhibitors of the pyrimidine biosynthesis pathway could be targeted for potential antiviral development. Here we report on a novel antiviral compound (NITD-982) that inhibits host dihydroorotate dehydrogenase (DHODH), an enzyme required for pyrimidine biosynthesis. The inhibitor was identified through screening 1.8 million compounds using a dengue virus (DENV) infection assay. The compound contains an isoxazole-pyrazole core structure, and it inhibited DENV with a 50% effective concentration (EC 50 ) of 2.4 nM and a 50% cytotoxic concentration (CC 50 ) of >5 M. NITD-982 has a broad antiviral spectrum, inhibiting both flaviviruses and nonflaviviruses with nanomolar EC 90 s. We also show that (i) the compound inhibited the enzymatic activity of recombinant DHODH, (ii) an NITD-982 analogue directly bound to the DHODH protein, (iii) supplementing the culture medium with uridine reversed the compoundmediated antiviral activity, and (iv) DENV type 2 (DENV-2) variants resistant to brequinar (a known DHODH inhibitor) were cross resistant to NITD-982. Collectively, the results demonstrate that the compound inhibits DENV through depleting the intracellular pyrimidine pool. In contrast to the in vitro potency, the compound did not show any efficacy in the DENV-AG129 mouse model. The lack of in vivo efficacy is likely due to the exogenous uptake of pyrimidine from the diet or to a high plasma protein-binding activity of the current compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.