We address the problem of hate speech detection in online user comments. Hate speech, defined as an "abusive speech targeting specific group characteristics, such as ethnicity, religion, or gender", is an important problem plaguing websites that allow users to leave feedback, having a negative impact on their online business and overall user experience. We propose to learn distributed low-dimensional representations of comments using recently proposed neural language models, that can then be fed as inputs to a classification algorithm. Our approach addresses issues of high-dimensionality and sparsity that impact the current state-of-the-art, resulting in highly efficient and effective hate speech detectors.
Automatic pain intensity estimation possesses a significant position in healthcare and medical field. Traditional static methods prefer to extract features from frames separately in a video, which would result in unstable changes and peaks among adjacent frames. To overcome this problem, we propose a real-time regression framework based on the recurrent convolutional neural network for automatic frame-level pain intensity estimation. Given vector sequences of AAM-warped facial images, we used a sliding-window strategy to obtain fixed-length input samples for the recurrent network. We then carefully design the architecture of the recurrent network to out- * Corresponding author put continuous-valued pain intensity. The proposed endto-end pain intensity regression framework can predict the pain intensity of each frame by considering a sufficiently large historical frames while limiting the scale of the parameters within the model. Our method achieves promising results regarding both accuracy and running speed on the published UNBC-McMaster Shoulder Pain Expression Archive Database.
It has become routine to collect data that are structured as multiway arrays (tensors). There is an enormous literature on low rank and sparse matrix factorizations, but limited consideration of extensions to the tensor case in statistics. The most common low rank tensor factorization relies on parallel factor analysis (PARAFAC), which expresses a rank k tensor as a sum of rank one tensors. When observations are only available for a tiny subset of the cells of a big tensor, the low rank assumption is not sufficient and PARAFAC has poor performance. We induce an additional layer of dimension reduction by allowing the effective rank to vary across dimensions of the table. For concreteness, we focus on a contingency table application. Taking a Bayesian approach, we place priors on terms in the factorization and develop an efficient Gibbs sampler for posterior computation. Theory is provided showing posterior concentration rates in high-dimensional settings, and the methods are shown to have excellent performance in simulations and several real data applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.