Water deficiency, together with soil salinization, has been seriously restricting sustainable agriculture around the globe for a long time. Optimal soil moisture regulation contributes to the amelioration of soil water and salinity for crops, which is favorable for plant production. A field experiment with five soil water lower limit levels (T1: 85% FC, T2: 75% FC, T3: 65% FC, T4: 55% FC, and T5: 45% FC, where FC is the field capacity) was conducted in southern Xinjiang in 2018 to investigate the responses of soil water–salt dynamics and cotton performance to soil moisture regulation strategies. The results indicated that in the horizontal direction, the farther away the drip irrigation belt, the lower the soil moisture content and the greater the soil salinity. In the vertical direction, the soil moisture and soil salinity increased first and then decreased with an increase in soil depth after irrigation, and the distribution was similar to an ellipse. Moreover, the humid perimeter of soil water and the leaching range of soil salt increased with a decrease in the soil moisture lower limit. Though more soil salt was leached out for the T5 treatment at the flowering stage due to the higher single irrigation amount, soil salinity increased again at the boll setting stage owing to the long irrigation interval. After the cotton was harvested, soil salt accumulated in the 0–100 cm layer and the accumulation amount followed T3 > T5 > T1 > T2 > T4. Moreover, with a decline of soil moisture lower limit, both plant height and nitrogen uptake decreased significantly while the shoot–root ratio increased. Compared with the yield (7233.2 kg·hm−2) and water use efficiency (WUE, 1.27 kg·m−3) of the T1 treatment, the yield for the T2 treatment only decreased by 1.21%, while the WUE increased by 10.24%. Synthetically, considering the cotton yield, water–nitrogen use efficiency, and soil salt accumulation, the soil moisture lower limit of 75% FC is recommended for cotton cultivation in southern Xinjiang, China.
In order to explore the treatment effect of a bio–ecological combined process on pollution reduction and carbon abatement of rural domestic wastewater under seasonal changes, the rural area of Lingui District, Guilin City, Guangxi Province, China was selected to construct a combined process of regulating a pond, biological filter, subsurface flow constructed wetland, and ecological purification pond. The influent water, effluent water, and the characteristics of pollutant treatment in each unit were investigated. The results showed that the average removal rates of COD, TN, and NH3–N in summer were 87.57, 72.18, and 80.98%, respectively, while they were 77.46, 57.52, and 64.48% in winter. There were significant seasonal differences in wastewater treatment results in Guilin. Meanwhile, in view of the low carbon:nitrogen ratio in the influent and the poor decontamination effect, the method of adding additional carbon sources such as sludge fermentation and rice straw is proposed to strengthen resource utilization and achieve carbon reduction and emission reduction. The treatment effect of ecological units, especially constructed wetland units, had a high contribution rate of TN treatment, but it was greatly impacted by seasons. The analysis of the relative abundance of the microbial community at the phylum level in constructed wetlands revealed that Proteobacteria, Acidobacteria, Chloroflexi, Firmicutes, Bacteroidetes, Planctomycetota, and Actinobacteria were the dominant phyla. The relative abundance of microbial communities of Proteobacteria, Chloroflexi, and Acidobacteria decreased to a large extent from summer to winter, while Firmicutes, Bacteroidetes, and Planctomycetota increased to varying degrees. These dominant bacteria played an important role in the degradation of pollutants such as COD, NH3–N, and TN in wetland systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.