Apple leaf diseases seriously damage the yield and quality of apples. Current apple leaf disease diagnosis methods primarily rely on human visual inspection, which often results in low efficiency and insufficient accuracy. Many computer vision algorithms have been proposed to diagnose apple leaf diseases, but most of them are designed to run on high-performance GPUs. This potentially limits their application in the field, in which mobile devices are expected to be used to perform computer vision-based disease diagnosis on the spot. In this paper, we propose a lightweight one-stage network, called the Mobile Ghost Attention YOLO network (MGA-YOLO), which enables real-time diagnosis of apple leaf diseases on mobile devices. We also built a dataset, called the Apple Leaf Disease Object Detection dataset (ALDOD), that contains 8,838 images of healthy and infected apple leaves with complex backgrounds, collected from existing public datasets. In our proposed model, we replaced the ordinary convolution with the Ghost module to significantly reduce the number of parameters and floating point operations (FLOPs) due to cheap operations of the Ghost module. We then constructed the Mobile Inverted Residual Bottleneck Convolution and integrated the Convolutional Block Attention Module (CBAM) into the YOLO network to improve its performance on feature extraction. Finally, an extra prediction head was added to detect extra large objects. We tested our method on the ALDOD testing set. Results showed that our method outperformed other state-of-the-art methods with the highest mAP of 89.3%, the smallest model size of only 10.34 MB and the highest frames per second (FPS) of 84.1 on the GPU server. The proposed model was also tested on a mobile phone, which achieved 12.5 FPS. In addition, by applying image augmentation techniques on the dataset, mAP of our method was further improved to 94.0%. These results suggest that our model can accurately and efficiently detect apple leaf diseases and can be used for real-time detection of apple leaf diseases on mobile devices.
Hand gesture is a new and promising interface for locomotion in virtual environments. While several previous studies have proposed different hand gestures for virtual locomotion, little is known about their differences in terms of performance and user preference in virtual locomotion tasks. In the present paper, we presented three different hand gesture interfaces and their algorithms for locomotion, which are called the Finger Distance gesture, the Finger Number gesture and the Finger Tapping gesture. These gestures were inspired by previous studies of gesture-based locomotion interfaces and are typical gestures that people are familiar with in their daily lives. Implementing these hand gesture interfaces in the present study enabled us to systematically compare the differences between these gestures. In addition, to compare the usability of these gestures to locomotion interfaces using gamepads, we also designed and implemented a gamepad interface based on the Xbox One controller. We compared these four interfaces through two virtual locomotion tasks. These tasks assessed their performance and user preference on speed control and waypoints navigation. Results showed that user preference and performance of the Finger Distance gesture were comparable to that of the gamepad interface. The Finger Number gesture also had close performance and user preference to that of the Finger Distance gesture. Our study demonstrates that the Finger Distance gesture and the Finger Number gesture are very promising interfaces for virtual locomotion. We also discuss that the Finger Tapping gesture needs further improvements before it can be used for virtual walking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.