This paper simulates Ca 2+ transmembrane transport through voltage-gated Ca 2+ channels in response to terahertz electromagnetic irradiation. The active transport of Ca 2+ ions is taken into considerations in the Ca 2+ transport. Temperature variations due to terahertz electromagnetic loss in physiological medium are simulated. The electromagnetic interaction between terahertz fields and physiological mobile ions at the cellular level is deduced from relativistic electrodynamics. It shows that effects of 0.1 ∼ 3 THz electromagnetic fields on cell mobile ions are primarily due to effects of electric fields, and effects of magnetic fields at the cellular level are insignificant. In addition, numerical simulation reveals that terahertz irradiation causes vibration of membrane potential, which is able to activate voltage-gated Ca 2+ channels. Besides, bioeffects of terahertz frequency, irradiation duration and electric intensity on the increment of intracellular Ca 2+ concentration due to activation of voltage-gated Ca 2+ channels are revealed. Meanwhile, numerical results show that temperature rises are inconsequential in the case of different irradiation parameters, indicating the non-thermal bioeffects of voltage-gated Ca 2+ transmembrane transport due to terahertz irradiation. Furthermore, the results also reveal that thermal bioeffect can be significant if the irradiation duration is raised long enough for high-dose terahertz irradiation. The numerical simulations lay the basis for understanding the bioeffects of terahertz irradiation on Ca 2+ transmembrane transport and pave the way for further exploration in modulation of intracellular Ca 2+ concentration with terahertz electromagnetic wave. INDEX TERMS Biological effects of electromagnetic radiation, modeling and simulations, calcium ions, voltage-gated calcium channel, active transport.
In this paper, the membrane electroporation induced by the terahertz electric field is simulated by means of the molecular dynamics method. The influences of the waveform and frequency of the applied terahertz electric field on the electroporation and the unique features of the process of the electroporation with the applied terahertz electric field are given. It shows that whether the electroporation can happen depends on the waveform of the applied terahertz electric field when the magnitude is not large enough. No pore appears if the terahertz electric field direction periodically reverses, and dipole moments of the interfacial water and the bulk water keep reversing. The nm-scale single pore forms with the applied terahertz trapezoidal electric field. It is found that the average pore formation time is strongly influenced by the terahertz electric field frequency. An abnormal variation region that shows decline exists on the correlation curve of the average pore formation time and the trapezoidal electric field frequency, whereas the overall trend of the curve is increasing. The decrease of the water oriented polarization degree results in the increase of the electroporation time, and the abnormal variation region appearance may be related to the drastic change of average water hydrogen bond number that is resulted from the resonance of water hydrogen bond network and the applied electric field. Compared to the nanosecond electric pulse and constant electric field, the numbers of the water protrusions and the water bridges are smaller and the pore formation time is relatively longer with the applied terahertz electric field.
A complex permittivity characterization method for liquid samples has been proposed. The measurement is carried out based on a self-designed microwave sensor with a split ring resonator (SRR), the unload resonant frequency of which is 5.05 GHz. The liquid samples in capillary are placed in the resonant zone of the fabricated senor for high sensitivity measurement. The frequency shift of 58.7 MHz is achieved when the capillary is filled with ethanol, corresponding a sensitivity of 97.46 MHz/μL. The complex permittivity of methanol, ethanol, isopropanol (IPA) and deionized water at the resonant frequency are measured and calibrated by the first order Debye model. Then, the complex permittivity of different concentrations of aqueous solutions of these materials are measured by using the calibrated sensor system. The results show that the proposed sensor has high sensitivity and accuracy in measuring the complex permittivity of liquid samples with volumes as small as 0.13 μL. It provides a useful reference for the complex permittivity characterization of small amount of liquid chemical samples. In addition, the characterization of an important biological sample (inositol) is carried out by using the proposed sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.