Figure 1. TAMs are the predominant source of PD-L1 in CCA. (A) Representative images (left and middle panels) of PD-L1 (brown staining, black arrowhead) plus CD68 (red staining, red arrowhead) coimmunostaining (n = 33) and PD-L1 (brown staining) plus CK-19 (red staining) coimmunostaining (n = 18) in human resected CCA specimens. Percentage of patients with positive PD-L1/CD68 costaining and PD-L1/CK19 costaining, respectively (right panel). Scale bars: 40 μm. (B) Histograms show expression of PD-L1 + macrophages in human CCA tumors. (C-F) Flow cytometry analysis of normal WT mouse livers (from WT mice without tumors) as well as adjacent livers and tumors of mice 28 days after orthotopic implantation of 1 × 10 6 SB (murine CCA) cells. (C) Percentage of PD-L1 + macrophages (Mφ) of total macrophages (CD45 + CD11b + F4/80 + ) in WT mouse normal liver, tumor-adjacent liver, or tumor. Fluorescence Minus One (FMO) controls were used for each independent experiment to establish gates (See Supplemental Figure 1A for gating strategy) (n ≥ 8). Representative histograms show expression of PD-L1 + macrophages. (D) Percentage of CD206 + TAMs (left panel) and PD-L1 + CD206 + TAMs (middle panel) of F4/80 int macrophages (CD45 + CD11b + F4/80 int ) in WT mouse liver, tumor-adjacent liver, or tumor. Representative contour plots (right panel) show CD206 and PD-L1 expression of F4/80 int macrophages (n ≥ 7). (E) Percentage of PD-L1 + CD206macrophages or PD-L1 + CD206 + macrophages (CD11b + F4/80 + ) of CD45 + cells from SB tumors (n = 28). (F) Percentage of PD-L1 expression in myeloid cells from SB tumors.
HCC differentiation, size and vascular invasion have strong relationships with AFP, poor differentiation and HCC size ≥ 10 cm are independent predictors of elevated AFP. BCLC shows better relationship with AFP.
Angiogenesis is essential for tumor growth, progression and metastasis. Studies indicate that expression and activity of ecto-5'-nucleotidase (CD73) are elevated in metastatic carcinomas. Our previous studies found that angiogenesis of tumor xenografts was decreased when the activity of CD73 in cancer cells was inhibited, implying that this enzyme is involved in tumor angiogenesis. To elucidate the mechanism, we investigated CD73 influence on tumor angiogenesis in both in vitro assays and in tumor bearing mice. We found that capillary-like structures were formed more in CD73(+/+) pulmonary microvascular endothelial cells (PMECs) than CD73(-/-) PMECs, and this was more pronounced when the cells were cultured in cancer-conditioned medium. Meanwhile, CD73 decreased endothelial cells adhesion to collagen IV and promoted migration. Additionally, the extent of tumor angiogenesis and the size of tumors were greater in CD73(+/+) mice than in CD73(-/-) mice. Thus, we concluded that CD73 can promote endothelial cells forming new vessels in cancer condition, facilitating tumor growth and hematogenous metastasis.
Rationale Mutagenesis screening is a powerful genetic tool for probing biological mechanisms underlying vertebrate development and human diseases. However, the increased colony management efforts in vertebrates impose a significant challenge for identifying genes affecting a particular organ such as the heart, especially those exhibiting adult phenotypes upon depletion. Objective We aim to develop a facile approach that streamlines colony management efforts via enriching cardiac mutants, which enables us to screen for adult phenotypes. Methods and Results The transparency of the zebrafish embryos enabled us to score 67 stable transgenic lines generated from an insertional mutagenesis screen using a transposon-based protein trapping vector. Fifteen lines with cardiac monomeric red fluorescent protein (mRFP) reporter expression were identified. We defined the molecular nature for 10 lines and bred them to homozygosity, which led to the identification of one embryonic lethal, one larval lethal, and one adult recessive mutant exhibiting cardiac hypertrophy at one year of age. Further characterization of these mutants uncovered an essential function of methionine adenosyltransferase II, alpha a (mat2aa) in cardiogenesis, an essential function of mitochondrial ribosomal protein S18B (mrps18b) in cardiac mitochondrial homeostasis, as well as a function of DnaJ (Hsp40) homolog, subfamily B, member 6b (dnajb6b) in adult cardiac hypertrophy. Conclusions We demonstrate that transposon-based gene trapping is an efficient approach for identifying both embryonic and adult recessive mutants with cardiac expression. The generation of a Zebrafish Insertional Cardiac (ZIC) mutant collection shall facilitate the annotation of a vertebrate cardiac genome, as well as enable heart-based adult screens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.