We demonstrate a simple, scalable approach to achieve encapsulated graphene transistors with negligible gate hysteresis, low doping levels and enhanced mobility compared to as-fabricated devices. We engineer the interface between graphene and atomic layer deposited (ALD) Al 2 O 3 by tailoring the growth parameters to achieve effective device encapsulation whilst enabling the passivation of charge traps in the underlying gate dielectric. We relate the passivation of charge trap states in the vicinity of the graphene to conformal growth of ALD oxide governed by in situ gaseous H 2 O pretreatments. We demonstrate the long term stability of such encapsulation techniques and the resulting insensitivity towards additional lithography steps to enable vertical device integration of graphene for multistacked electronics fabrication.
We study electron transport in nanostructures patterned in bilayer graphene patches grown epitaxially on SiC as a function of doping, magnetic field, and temperature. Away from charge neutrality transport is only weakly modulated by changes in carrier concentration induced by a local side-gate. At low ntype doping close to charge neutrality, electron transport resembles that in exfoliated graphene nanoribbons and is well described by tunnelling of single electrons through a network of Coulomb-blockaded islands. Under the influence of an external magnetic field, Coulomb blockade resonances fluctuate around an average energy and the gap shrinks as a function of magnetic field. At charge neutrality, however, conduction is less insensitive to external magnetic fields. In this regime we also observe a stronger suppression of the conductance below T * , which we interpret as a sign of broken interlayer symmetry or strong fluctuations in the edge/potential disorder.
The integrated structure of graphene single-electron transistor and nanostrip electrometer was prepared using the semiconductor fabrication process. Through the electrical performance test of the large sample number, qualified devices were selected from low-yield samples, which exhibited an obvious Coulomb blockade effect. The results show that the device can deplete the electrons in the quantum dot structure at low temperatures, thus, accurately controlling the number of electrons captured by the quantum dot. At the same time, the nanostrip electrometer coupled with the quantum dot can be used to detect the quantum dot signal, that is, the change in the number of electrons in the quantum dot, because of its quantized conductivity characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.