While tomographic imaging of cardiac structure and kinetics has improved substantially, electrophysiological mapping of the heart is still restricted to the surface with little or no depth information beneath. The progress in reconstructing 3-D action potential from surface voltage data has been hindered by the intrinsic ill-posedness of the problem and the lack of a unique solution in the absence of prior assumptions. In this work, we propose a novel adaption of the total-variation (TV) prior to exploit the unique spatial property of transmural action potential of being piecewise smooth with a steep boundary (gradient) separating depolarized and repolarized regions. We present a variational TV-prior instead of a common discrete TV-prior for improved robustness to mesh resolution, and solve the TV-minimization by a sequence of weighted, first-order L2-norm minimization. In a large set of phantom experiments, the proposed method is shown to outperform existing quadratic methods in preserving the steep gradient of action potential along the border of infarcts, as well as in capturing the disruption to the normal path of electrical wavefronts. Real-data experiments also further demonstrate the potential of the proposed method in revealing the location and shape of infarcts when quadratic methods fail to do so.
Advances in computer vision have substantially improved our ability to analyze the structure and mechanics of the heart. In comparison, our ability to observe and analyze cardiac electrical activities is much limited. The progress to computationally reconstruct cardiac current sources from noninvasive voltage data sensed on the body surface has been hindered by the ill-posedness and the lack of a unique solution of the reconstruction problem. Common L2- and L1-norm regularizations tend to produce a solution that is either too diffused or too scattered to reflect the complex spatial structure of current source distribution in the heart. In this work, we propose a general regularization with Lp-norm (1 < p < 2) constraint to bridge the gap and balance between an overly smeared and overly focal solution in cardiac source reconstruction. In a set of phantom experiments, we demonstrate the superiority of the proposed Lp-norm method over its L1 and L2 counterparts in imaging cardiac current sources with increasing extents. Through computer-simulated and real-data experiments, we further demonstrate the feasibility of the proposed method in imaging the complex structure of excitation wavefront, as well as current sources distributed along the postinfarction scar border. This ability to preserve the spatial structure of source distribution is important for revealing the potential disruption to the normal heart excitation.
Noninvasive inference of patient-specific intramural electrical activity from surface electrocardiograms (ECG) lacks a unique solution in the absence of prior assumptions. While 3D cardiac electrophysiological models emerged to be a viable vehicle for constraining this inference with knowledge about the spatiotemporal dynamics of cardiac excitation, it is important for the inference to be robust to errors in these highdimensional model predictions given the limited ECG data. We present an innovative solution to this problem by exploiting the low-dimensional structure of the solution space -a powerful regularizer in overcoming the lack of measurements -within the dynamic inference guided by physiological models. We present the first Bayesian inference framework that allows the exploration of both the spatial sparsity of cardiac excitation and its complex nonlinear spatiotemporal dynamics for an improved inference of patient-specific intramural electrical activity. The benefit of this integration is verified in both synthetic and real-data experiments, where we present one of the first detailed, point-by-point comparison of the reconstructed electrical activity to in-vivo catheter mapping data.
Noninvasive cardiac electrophysiological (EP) imaging aims to mathematically reconstruct the spatiotemporal dynamics of cardiac sources from body-surface electrocardiographic (ECG) data. This ill-posed problem is often regularized by a fixed constraining model. However, a fixed-model approach enforces the source distribution to follow a pre-assumed structure that does not always match the varying spatiotemporal distribution of actual sources. To understand the model-data relation and examine the impact of prior models, we present a multiple-model approach for volumetric cardiac EP imaging where multiple prior models are included and automatically picked by the available ECG data. Multiple models are incorporated as an Lp-norm prior for sources, where p is an unknown hyperparameter with a prior uniform distribution. To examine how different combinations of models may be favored by different measurement data, the posterior distribution of cardiac sources and hyperparameter p is calculated using a Markov Chain Monte Carlo (MCMC) technique. The importance of multiple-model prior was assessed in two sets of synthetic and real-data experiments, compared to fixed-model priors (using Laplace and Gaussian priors). The results showed that the posterior combination of models (the posterior distribution of p) as determined by the ECG data differed substantially when reconstructing sources with different sizes and structures. While the use of fixed models is best suited in situations where the prior assumption fits the actual source structures, the use of an automatically adaptive set of models may have the ability to better address model-data mismatch and to provide consistent performance in reconstructing sources with different properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.