In this contribution, for the first time, the molecular n-doping of a donor-acceptor (D-A) copolymer achieving 200-fold enhancement of electrical conductivity by rationally tailoring the side chains without changing its D-A backbone is successfully improved. Instead of the traditional alkyl side chains for poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl](NDI)-alt-5,5'-(2,2'-bithiophene)} (N2200), polar triethylene glycol type side chains is utilized and a high electrical conductivity of 0.17 S cm after doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine is achieved, which is the highest reported value for n-type D-A copolymers. Coarse-grained molecular dynamics simulations indicate that the polar side chains can significantly reduce the clustering of dopant molecules and favor the dispersion of the dopant in the host matrix as compared to the traditional alkyl side chains. Accordingly, intimate contact between the host and dopant molecules in the NDI-based copolymer with polar side chains facilitates molecular doping with increased doping efficiency and electrical conductivity. For the first time, a heterogeneous thermoelectric transport model for such a material is proposed, that is the percolation of charge carriers from conducting ordered regions through poorly conductive disordered regions, which provides pointers for further increase in the themoelectric properties of n-type D-A copolymers.
It is demonstrated that the n-type thermoelectric performance of donor-acceptor (D-A) copolymers can be enhanced by a factor of >1000 by tailoring the density of states (DOS). The DOS distribution is tailored by embedding sp -nitrogen atoms into the donor moiety of the D-A backbone. Consequently, an electrical conductivity of 1.8 S cm and a power factor of 4.5 µW m K are achieved. Interestingly, an unusual sign switching (from negative to positive) of the Seebeck coefficient of the unmodified D-A copolymer at moderately high dopant loading is observed. A direct measurement of the DOS shows that the DOS distributions become less broad upon modifying the backbone in both pristine and doped states. Additionally, doping-induced charge transfer complexes (CTC) states, which are energetically located below the neutral band, are observed in DOS of the doped unmodified D-A copolymer. It is proposed that charge transport through these CTC states is responsible for the positive Seebeck coefficients in this n-doped system. This is supported by numerical simulation and temperature dependence of Seebeck coefficient. The work provides a unique insight into the fundamental understanding of molecular doping and sheds light on designing efficient n-type OTE materials from a perspective of tailoring the DOS.
Molecular
doping of organic semiconductors creates Coulombically
bound charge and counterion pairs through a charge-transfer process.
However, their Coulomb interactions and strategies to mitigate their
effects have been rarely addressed. Here, we report that the number
of free charges and thermoelectric properties are greatly enhanced
by overcoming the Coulomb interaction in an n-doped conjugated polymer.
Poly(2,2′-bithiazolothienyl-4,4′,10,10′-tetracarboxydiimide)
(PDTzTI) and the benchmark N2200 are n-doped by tetrakis (dimethylamino)
ethylene (TDAE) for thermoelectrics. Doped PDTzTI exhibits ∼10
times higher free-charge density and 500 times higher conductivity
than doped N2200, leading to a power factor of 7.6 μW m–1 K–2 and ZT of
0.01 at room temperature. Compared to N2200, PDTzTI features a better
molecular ordering and two-dimensional charge delocalization, which
help overcome the Coulomb interaction in the doped state. Consequently,
free charges are more easily generated from charge–counterion
pairs. This work provides a strategy for improving n-type thermoelectrics
by tackling electrostatic interactions.
The ‘phonon-glass electron-crystal’ concept has triggered most of the progress that has been achieved in inorganic thermoelectrics in the past two decades. Organic thermoelectric materials, unlike their inorganic counterparts, exhibit molecular diversity, flexible mechanical properties and easy fabrication, and are mostly ‘phonon glasses’. However, the thermoelectric performances of these organic materials are largely limited by low molecular order and they are therefore far from being ‘electron crystals’. Here, we report a molecularly n-doped fullerene derivative with meticulous design of the side chain that approaches an organic ‘PGEC’ thermoelectric material. This thermoelectric material exhibits an excellent electrical conductivity of >10 S cm−1 and an ultralow thermal conductivity of <0.1 Wm−1K−1, leading to the best figure of merit ZT = 0.34 (at 120 °C) among all reported single-host n-type organic thermoelectric materials. The key factor to achieving the record performance is to use ‘arm-shaped’ double-triethylene-glycol-type side chains, which not only offer excellent doping efficiency (~60%) but also induce a disorder-to-order transition upon thermal annealing. This study illustrates the vast potential of organic semiconductors as thermoelectric materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.