Conductive hydrogels are promising interface materials utilized in bioelectronics for human-machine interactions. However, the low-temperature induced freezing problem and water evaporation-induced structural failures have significantly hindered their practical applications. To address these problems, herein, an elaborately designed nanocomposite organohydrogel is fabricated by introducing highly conductive MXene nanosheets into a tannic acid-decorated cellulose nanofibrils/polyacrylamide hybrid gel network infiltrated with glycerol (Gly)/water binary solvent. Owing to the introduction of Gly, the as-prepared organohydrogel demonstrates an outstanding flexibility and electrical conductivity under a wide temperature spectrum (from −36 to 60 °C), and exhibits long-term stability in an open environment (>7 days). Additionally, the dynamic catechol-borate ester bonds, along with the readily formed hydrogen bonds between the water and Gly molecules, further endow the organohydrogel with excellent stretchability (≈1500% strain), high tissue adhesiveness, and self-healing properties. The favorable environmental stability and broad working strain range (≈500% strain); together with high sensitivity (gauge factor of 8.21) make this organohydrogel a promising candidate for both large and subtle motion monitoring.
Humidity sensors have been widely used for humidity monitoring in industrial fields, while the unsatisfactory flexibility, time consumption, and expensive integration process of conventional inorganic sensors significantly limit their application in wearable electronics. Using paper-based humidity sensors is considered a feasible method to overcome these drawbacks because of their good flexibility and roll-to-roll manufacturability, while they still face problems such as poor durability and low sensitivity. In this study, we report a high-performance paper-based humidity sensor based on a rationally designed bilayered structure consisting of a nanoporous cellulose nanofiber/carbon nanotube (CNF/CNT) sensitive layer and a microporous paper substrate. The vast number of hydrophilic hydroxyl groups on the surface of CNF and paper fibers enables fast water molecule exchange between the humidity-sensitive material and the external environment via hydrogen bonding, endowing the paper-based sensor with an excellent humidity responsive property. The obtained sensor displays a maximum response value of 65.0% (ΔI/I 0) at 95% relative humidity. Furthermore, the mechanical interlocking structure formed between the CNF/CNT layer and the paper layer provides the sensor with strong interlayer adhesion. Benefiting from the unique structure, the sensor also exhibits outstanding bending (with a maximum curvature of 22.2 cm–1) and folding durability (up to 50 times). Finally, as a proof of concept, a simple humidity-measuring device is assembled, which demonstrates an excellent responsive property toward human breath and the change of air humidity, indicating a great potential of our paper-based humidity sensor toward practical applications.
Due to the difficulty in fabricating bioceramic scaffolds with smaller pore sizes by the current 3D printing technique, the effect of smaller pore sizes (below 400 µm) of 3D printed bioceramic scaffolds on the bone regeneration and biomechanical behavior is never studied. Herein beta-tricalcium phosphate (β-TCP) scaffolds with interconnected smaller pores of three different sizes (100, 250, and 400 µm) are fabricated by 3D plotting. The resultant scaffolds are then implanted into rat critical-sized calvarial defects without any seeded cells. A custom-designed device is developed to investigate the biomechanical properties of the scaffolds after surgical implantation for 4, 8, and 12 weeks. The scaffolds with the 100 µm pore size are found to present the highest maximum load and stiffness, comparable to those of the autogenous bone, after being implanted for 12 weeks. Micro-computed tomography (micro-CT) and histological analysis further indicate that the scaffolds with the 100 µm pore size achieve the highest percentage of new bone ingrowth, which correlates to their best in vivo biomechanical properties. This study demonstrates that tailoring the pore size of β-TCP scaffolds to a smaller range by 3D-plotting can be a facile and efficient approach to enhanced bone regeneration and biomechanical behaviors in bone repair.
Calcium phosphate bio-ceramics are osteo-conductive, but it remains a challenge to promote the induction of bone augmentation and capillary formation. The surface micro/nano-topography of materials can be recognized by cells and then the cell fate are mediated. Traditional regulation methods of carving surface structures on bio-ceramics employ mineral reagents and organic additives, which might introduce impurity phases and affect the biological results. In a previous study, a facile and novel method was utilized with ultrapure water as the unique reagent for hydrothermal treatment, and a uniform hydroxyapatite (HAp) surface layer was constructed on composite ceramics (β-TCP/CaSiO 3 ) in situ . Further combined with 3D printing technology, biomimetic hierarchical structure scaffolds were fabricated with interconnected porous composite ceramic scaffolds as the architecture and micro/nano-rod hybrid HAp as the surface layer. The obtained HAp surface layer favoured cell adhesion, alleviated the cytotoxicity of precursor scaffolds, and upregulated the cellular differentiation of mBMSCs and gene expression of HUVECs in vitro . In vivo studies showed that capillary formation, bone augmentation and new bone matrix formation were upregulated after the HAp surface layer was obtained, and the results confirmed that the fabricated biomimetic hierarchical structure scaffold could be an effective candidate for bone regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.