MicroRNAs are 19- to 22-nucleotide small noncoding RNAs that have been implicated in abiotic stress responses. In this study, we found that knockdown of microRNA166, using the Short Tandem Target Mimic (STTM) system, resulted in morphological changes that confer drought resistance in rice (). From a large-scale screen for miRNA knockdown lines in rice, we identified miR166 knockdown lines (STTM166); these plants exhibit a rolled-leaf phenotype, which is normally displayed by rice plants under drought stress. The leaves of STTM166 rice plants had smaller bulliform cells and abnormal sclerenchymatous cells, likely causing the rolled-leaf phenotype. The STTM166 plants had reduced stomatal conductance and showed decreased transpiration rates. The STTM166 lines also exhibited altered stem xylem and decreased hydraulic conductivity, likely due to the reduced diameter of the xylem vessels. Molecular analyses identified rice (), a member of HD-Zip III gene family, as a major target of miR166; moreover, rice plants overexpressing a miR166-resistant form of resembled the STTM166 plants, including leaf rolling and higher drought resistance. The genes downstream of miR166- consisted of polysaccharide synthesis-related genes that may contribute to cell wall formation and vascular development. Our results suggest that drought resistance in rice can be increased by manipulating miRNAs, which leads to developmental changes, such as leaf rolling and reduced diameter of the xylem, that mimic plants' natural responses to water-deficit stress.
SUMMARYHormones play pivotal roles in regulating plant development, growth, and stress responses, and cross-talk among different hormones fine-tunes various aspects of plant physiology. Jasmonic acid (JA) is important for plant defense against herbivores and necrotic fungi and also regulates flower development; in addition, Arabidopsis mutants over-producing JA usually have stunted stems and wound-induced jasmonates suppress Arabidopsis growth, suggesting that JA is also involved in stem elongation. Gibberellins (GAs) promote stem and leaf growth and modulate seed germination, flowering time, and the development of flowers, fruits, and seeds. However, little is known about the interaction between the JA and GA pathways. Two calcium-dependent protein kinases, CDPK4 and CDPK5, are important suppressors of JA accumulation in a wild tobacco species, Nicotiana attenuata. The stems of N. attenuata silenced in CDPK4 and CDPK5 (irCDPK4/5 plants) had dramatically increased levels of JA and exhibited stunted elongation and had very high contents of secondary metabolites. Genetic analysis indicated that the high JA levels in irCDPK4/5 stems accounted for the suppressed stem elongation and the accumulation of secondary metabolites. Supplementation of GA 3 to irCDPK4/5 plants largely restored normal stem growth to wild-type levels. Measures of GA levels indicated that over-accumulation of JA in irCDPK4/5 stems inhibited the biosynthesis of GAs. Finally, we show that JA antagonizes GA biosynthesis by strongly inhibiting the transcript accumulation of GA20ox and possibly GA13ox, the key genes in GA production, demonstrating that high JA levels antagonize GA biosynthesis in stems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.