Abstract. This paper proposes a design for a robust adaptive controller for the Dynamical Positioning (DP) of underwater vehicles with unknown hydrodynamic coefficients, unknown disturbances and input dead-zones. First, for convenience of controller design, the Multi-Input Multi-Output (MIMO) system is divided into several Single-Input Single-Output (SISO) systems. Next, a Dynamic Recurrent Fuzzy Neural Network (DRFNN) with feedback loops is employed to approximate the unknown portion of the controller, which can greatly reduce the number of neural network inputs. A fuzzy logic dead-zone compensator is designed to cope with the unknown dead-zone characteristics of actuators. The upper bounds of the approximation errors and disturbances of the network, which are often used in existing works, are not necessary in this paper due to the presentation of a special robust compensator. Stability analysis is conducted according to the Lyapunov theorem, and the tracking error is proved to converge to zero. Simulation results indicate that the proposed controller demonstrates good performance.
This paper presents a backstepping controller using barrier Lyapunov function (BLF) for dynamic positioning (DP) system. For safety reasons, the position and heading of DP ship are to be maintained in certain range. Thus, in this paper, a control law based on BLF and backstepping technique is proposed to limit the position and heading. The closed-loop system is proved stable in the sense of Lyapunov stability theories. In addition, since the velocities of ship are not measurable and the wave frequency (WF) motion is unavailable, a passive observer is adopted to estimate the velocities and the effect of WF motion. The simulation results show that the proposed controller can limit the position and heading of the vessel in a predefined range and verify the performance of the proposed controller and the passive observer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.