Three-dimensional (3D) printing is an emerging manufacturing technology for biomedical and pharmaceutical applications. Fused deposition modelling (FDM) is a low cost extrusion-based 3D printing technique that can deposit materials layer-by-layer to create solid geometries. This review article aims to provide an overview of FDM based 3D printing application in developing new drug delivery systems. The principle methodology, suitable polymers and important parameters in FDM technology and its applications in fabrication of personalised tablets and drug delivery devices are discussed in this review. FDM based 3D printing is a novel and versatile manufacturing technique for creating customised drug delivery devices that contain accurate dose of medicine( s) and provide controlled drug released profiles.
This study reports on the fabrication of a controlled release system for the delivery of levonorgestrel (LNG) for long-term contraception. LNG was encapsulated in chemically cross-linked chitosan (CS) microspheres, and microspheres presented a spherical geometry with a good particle size distribution (polydispersity index (PDI) < 0.1). The LNG-CS microspheres were classified based on their particle size range, <63, 63−125, and 125−300 μm, where the 125−300 μm particles were selected to be incorporated into a physically cross-linked and annealed PVA hydrogel matrix to prolong the drug release. PVA concentrations and the annealing treatment influenced the swelling behavior of PVA hydrogels. Fourier transform infrared (FTIR) spectroscopy indicated that CS was successfully crosslinked through the formation of a Schiff base; the PVA hydrogel was formed through hydrogen bonding without reacting with LNG, which was only physically entrapped, thus maintaining its stability. Differential scanning calorimetry (DSC) showed that freeze−thaw and annealing processes increased the degree of crystallinity in the PVA hydrogel. In vitro drug release assessments for all formulations showed zero order without any burst release. Over a period of 100 days, 34, 27, and 21% of LNG was released from the CS-LNG microspheres in the size ranges < 63, 63−125, and 125−300 μm, respectively, while only 14, 11, and 9% of LNG was released when the CS-LNG microspheres were incorporated into 10, 15, and 20% PVA hydrogels, respectively. The drug release kinetics exhibited both diffusion-and swelling-controlled mechanisms following the Korsmeyer−Peppas model. This work presents a promising delivery system for long-term contraception with controlled zero-order release behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.