Changes in the location of γ-tubulin ensure cell survival and preserve genome integrity. We investigated whether the nuclear accumulation of γ-tubulin facilitates the transport of proliferating cell nuclear antigen (PCNA) between the cytosolic and the nuclear compartment in mammalian cells. We found that the γ-tubulin meshwork assists in the recruitment of PCNA to chromatin. Also, decreased levels of γ-tubulin reduce the nuclear pool of PCNA. In addition, the γ-tubulin C terminus encodes a PCNA-interacting peptide (PIP) motif, and a γ-tubulin–PIP-mutant affects the nuclear accumulation of PCNA. In a cell-free system, PCNA and γ-tubulin formed a complex. In tumors, there is a significant positive correlation between TUBG1 and PCNA expression. Thus, we report a novel mechanism that constitutes the basis for tumor growth by which the γ-tubulin meshwork maintains indefinite proliferation by acting as an opportune scaffold for the transport of PCNA from the cytosol to the chromatin.
Cucurbitacin B (CuB) is a natural tetracyclic triterpene product and displays antitumor activity across a wide array of cancers. In this study, we explored the anti-pancreatic cancer activity of CuB alone and in combination with SCH772984, an ERK inhibitor, in vitro and in vivo. CuB inhibited proliferation of pancreatic cancer cells by arresting them in the G2/M cell cycle phase. This was associated with inhibition of EGFR expression and activity and downstream signaling, including PI3K/Akt/mTOR and STAT3. Interestingly, ERK activity was markedly enhanced by activating AMPK signaling after 12 h of CuB treatment. SCH772984 potentiates the cytotoxic effect of CuB on pancreatic cancer cells through complementary inhibition of EGFR, PI3K/Akt/mTOR, STAT3 and ERK signaling, followed by an increase in the pro-apoptotic protein Bim and a decrease in the anti-apoptotic proteins Mcl-1, Bcl-2, Bcl-xl and survivin. Furthermore, combined therapy with CuB and SCH772984 resulted in highly significant growth inhibition of pancreatic cancer xenografts. These results may provide a basis for further development of combining CuB and ERK inhibitors to treat pancreatic cancer.
Cucurbitacin B (CuB) is a natural tetracyclic triterpene product that displays antitumor activity against a wide variety of cancers. In this study, we explored the antipancreatic cancer activity of CuB via the inhibition of expression of the cancer-related long noncoding RNA, actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1). CuB arrested pancreatic cancer (PC) cells in the G2/M cell cycle phase by suppressing the expression of AFAP1-AS1. Insights into the mechanisms of competing endogenous RNAs (ceRNAs) gained from bioinformatics analysis and luciferase activity assays showed that the epidermal growth factor receptor (EGFR) and AFAP1-AS1 directly compete for miR-146b-5p binding. CuB-induced high miR-146b-5p expression and inhibited the expression of AFAP1-AS1. In summary, reducing the expression of endogenous AFAP1-AS1 effectively increased the available concentration of miR-146b-5p in PC, whereas miR-146b-5p overexpression prevented the expression of endogenous AFAP1-AS1. In particular, we hypothesized that AFAP1-AS1 might act as a ceRNA, effectively becoming a sponge for miR-146b-5p, thereby activating the expression of the EGFR. Thus, CuB suppresses the proliferation, in vitro and in vivo, of PC cells through the ceRNA effect of AFAP1-AS1 on miR-146b-5p.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.