High-uniform nanowires with diameters down to 50 nm are directly taper-drawn from bulk glasses. Typical loss of these wires goes down to 0.1 dB/mm for single-mode operation. Favorable photonic properties such as high index for tight optical confinement in tellurite glass nanowires and photoluminescence for active devices in doped fluoride and phosphate glass nanowires are observed. Supporting high-index tellurite nanowires with solid substrates (such as silica glass and MgF2 crystal) and assembling low-loss microcoupler with these wires are also demonstrated. Photonic nanowires demonstrated in this work may open up vast opportunities for making versatile building blocks for future micro- and nanoscale photonic circuits and components.
The heteroatom-doped, carbon-activated peroxymonosulfate (PMS) system proceeding via the non-radical oxidation pathway involving singlet oxygen (1O2) represents a promising advanced oxidation process (AOP) due to the resistance of 1O2 to...
A Yttrium aluminum garnet (YAG) crystal fiber with a thulium-doped end tip was specially grown by means of the laser heated pedestal growth approach and designed to be incorporated in a fiber-optic temperature probe. The fluorescence decay characteristics of the crystal fiber, including the temperature dependence of both the fluorescence lifetime and intensity, were comprehensively investigated. Experimental results indicated that the crystal fiber showed a monotonic relationship between the fluorescence lifetime and temperature with an average lifetime sensitivity of 3 s C over a wide temperature range, taking measurement from room temperature to 1200 C. Good stability (up to 1400 C) was observed with high repeatability of the fluorescence lifetime during the annealing process carried out on the fiber over this temperature range. The fiber was found to be an excellent candidate material to be used as a fluorescence decay-based fiber thermometer probe and the results are presented on its performance.Index Terms-Crystal fiber, fiber thermometer, fluorescence lifetime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.