Silver niobate (AgNbO3)-based dielectric materials show great application potential in pulse power energy storage systems due to their high energy storage density.
The piezoelectric properties of lead zirconate titanate [Pb(Zr,Ti)O
3
or PZT] ceramics could be enhanced by fabricating textured ceramics that would align the crystal grains along specific orientations. We present a seed-passivated texturing process to fabricate textured PZT ceramics by using newly developed Ba(Zr,Ti)O
3
microplatelet templates. This process not only ensures the template-induced grain growth in titanium-rich PZT layers but also facilitates desired composition through interlayer diffusion of zirconium and titanium. We successfully prepared textured PZT ceramics with outstanding properties, including Curie temperatures of 360°C, piezoelectric coefficients
d
33
of 760 picocoulombs per newton and
g
33
of 100 millivolt meters per newton, and electromechanical couplings
k
33
of 0.85. This study addresses the challenge of fabricating textured rhombohedral PZT ceramics by suppressing the otherwise severe chemical reaction between PZT powder and titanate templates.
In this study, solid dispersions (SDs) and electrospinning combined methods were used to increase the bioavailability and solubility of a water insoluble drug. Pullulan (PUL) nanofibers containing rutin-Pluronic SDs (PUL&RU@PF) were fabricated by electrospinning. Rutin was efficiently loaded with Pluronic SDs using a facile mixing method and the prepared SDs indicated that 4% w/v Pluronic concentration provided the optimal drug loading efficiency. Scanning electron microscopy (SEM) verified that the morphology of the complex nanofibers had a uniformly smooth surface with a porous structure. The amorphous state of rutin was examined by XRD and DSC. Moreover, rutin in the electrospun PUL-rutin-Pluronic complex structure displayed a fast release profile and equivalent antioxidant ability compared to that of raw rutin. In conclusion, PUL&RU@PF may be a promising alternative for enhanced solubility and UV stability with remaining rutin's inherent antioxidant ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.