Inhibitors in myelin play a major role in preventing spontaneous axonal regeneration after CNS injury. Elevation of cAMP overcomes this inhibition, in a transcription-dependent manner, through the upregulation of Arginase I (Arg I) and increased synthesis of polyamines. Here, we show that the cAMP effect requires activation of the transcription factor cAMP response element binding protein (CREB) to overcome myelin inhibitors; a dominant-negative CREB abolishes the effect, and neurons expressing a constitutively active form of CREB are not inhibited. Activation of CREB is also required for cAMP to upregulate Arg I, and the ability of constitutively active CREB to overcome inhibition is blocked by an inhibitor of polyamine synthesis. Finally, expression of constitutively active CREB in DRG neurons is sufficient to promote regeneration of subsequently lesioned dorsal column axons. These results indicate that CREB plays a central role in overcoming myelin inhibitors and so encourages regeneration in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.