The placenta is crucial for a successful pregnancy and the health of both the fetus and the pregnant woman. However, how the human trophoblast lineage is regulated, including the categorization of the placental cell subtypes is poorly understood. Here we performed single-cell RNA sequencing (RNA-seq) on sorted placental cells from first- and second-trimester human placentas. New subtypes of cells of the known cytotrophoblast cells (CTBs), extravillous trophoblast cells (EVTs), Hofbauer cells, and mesenchymal stromal cells were identified and cell-type-specific gene signatures were defined. Functionally, this study revealed many previously unknown functions of the human placenta. Notably, 102 polypeptide hormone genes were found to be expressed by various subtypes of placental cells, which suggests a complex and significant role of these hormones in regulating fetal growth and adaptations of maternal physiology to pregnancy. These results document human placental trophoblast differentiation at single-cell resolution and thus advance our understanding of human placentation during the early stage of pregnancy.
Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS) inflammation. Neurons induce the proliferation of activated CD4+ T cells through B7-CD28 and transforming growth factor (TGF)-beta1-TGF-beta receptor signaling pathways, resulting in amplification of T-cell receptor signaling through phosphorylated ZAP-70, interleukin (IL)-2 and IL-9. The interaction between neurons and T cells results in the conversion of encephalitogenic T cells to CD25+ TGF-beta1+ CTLA-4+ FoxP3+ T regulatory (Treg) cells that suppress encephalitogenic T cells and inhibit experimental autoimmune encephalomyelitis. Suppression is dependent on cytotoxic T lymphocyte antigen (CTLA)-4 but not TGF-beta1. Autocrine action of TGF-beta1, however, is important for the proliferative arrest of Treg cells. Blocking the B7 and TGF-beta pathways prevents the CNS-specific generation of Treg cells. These findings show that generation of neuron-dependent Treg cells in the CNS is instrumental in regulating CNS inflammation.
Avalanche phenomena leverage steeply nonlinear dynamics to generate disproportionately high responses from small perturbations and are found in a multitude of events and materials 1 , enabling technologies including optical phase-conjugate imaging, 2 infrared quantum counting, 3 and efficient upconverted lasing 4-6 . However, the photon avalanching (PA) mechanism underlying these optical innovations has been observed only in bulk materials and aggregates 6,7 , and typically at cryogenic temperatures 5-8 , limiting its utility and impact in many applications. Here, we report the realization of PA at room temperature in single nanostructures -small, Tm 3+ -doped upconverting nanocrystals -and demonstrate their use in superresolution imaging at wavelengths that fall within near-infrared (NIR) spectral windows of maximal biological transparency. Avalanching nanoparticles (ANPs) can be pumped by either continuous-wave or pulsed lasers and exhibit all of the defining features of PA. These hallmarks include clear excitation power thresholds, exceptionally long rise time at threshold, and a dominant excited-state absorption that is >13,000 times larger than ground-state absorption. Beyond the avalanching threshold, ANP emission scales nonlinearly with the 26 th power of pump intensity, resulting from induced positive optical feedback in each nanocrystal. This enables the experimental realization of photon-avalanche single-beam superresolution imaging (PASSI) 7 , achieving sub-70 nm spatial resolution using only simple scanning confocal microscopy and before any computational analysis. Pairing their steep nonlinearity with existing superresolution techniques and computational methods 9-11 , ANPs allow for imaging with higher resolution and at ca. 100-fold lower excitation intensities than is possible with other probes. The low PA threshold and exceptional photostability of ANPs also suggest their utility in a diverse array of applications 7 including subwavelength bioimaging 7,12,13 , IR detection, temperature [14][15][16] and pressure 17 transduction, neuromorphic computing 18 , and quantum optics 19,20 . Main
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.