In this paper, we report the facile preparation of monodisperse titanium dioxide-diltiazem/tetrachlorobismuth core-shell nanospheres (TiO2@DTMBi), in which, diltiazem (DTM)/tetrachlorobismuth (BiCl4) complexes were employed as electroactive materials. The morphology, size, formation, and structure of the obtained TiO2@DTMBi spheres were investigated by transmission electron microscopy, scanning electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, and X-ray diffraction. The optimal condition of obtained monodisperse 40-nm TiO2@DTMBi spheres was researched. The results of using TiO2@DTMBi nanospheres as proposed drug sensor indicate a wide linear range (10-7 to 10-1 M) and a very low detection limit of 0.20 μg/mL.
A novel modified ion selective electrode based on Fe2O3-clorprenaline/tetraphenylborate nanospheres (Fe2O3-CLPT NSs) as electroactive materials for the determination of clorprenaline hydrochloride (CLP) is described. The α-Fe2O3 nanoparticles (NPs) were prepared by hydrothermal synthesis, then self-assembled on CLP/tetraphenylborate (TPB) to form Fe2O3-CLPT NSs, which were used as a potentiometric electrode for analyte determination innovatively. The Fe2O3-CLPT NSs modified electrode exhibited a wider concentration range from 1.0 × 10−7 to 1.0 × 10−1 mol/L and a lower detection limit of 3.7 × 10−8 mol/L compared with unmodified electrodes. The selectivity of the modified electrode was evaluated by fixed interference method. The good performance of the modified electrode such as wide pH range (2.4–6.7), fast response time (15 s), and adequate lifetime (14 weeks) indicate the utility of the modified electrode for evaluation of CLP content in various real samples. Finally, the modified electrode was successfully employed to detect CLP in pork samples with satisfactory results. These results demonstrated the Fe2O3-CLPT NSs modified electrode to be a functional and convenient method to the field of potentiometry determination of CLP in real samples.
In this work, we reported a simple, fast, and sensitive determination of ractopamine (RAC) residues in pork by using novel ractopamine-tetraphenylborate complexed nanoparticles (RT NPs) as sensors. The prepared RT NPs exhibited a fast response time of 10 s, a wide linear range from 0.1 to 1.0 × 10−7 mol/L, and a very low detection limit of 7.4 × 10−8 mol/L. The prepared sensor also presents a high selectivity for ractopamine under different pH conditions ranged from 2.85 to 7.18. These results reveal that the fabricated RT NPs can be used as efficient electrochemical sensors to determine ractopamine in animal productions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.